Skip to main content
Log in

Liver cancer-specific mutations in functional domains of ADAR2 lead to the elevation of coding and non-coding RNA editing in multiple tumor-related genes

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Mutation is the major cause of phenotypic innovations. Apart from DNA mutations, the alteration on RNA such as the ADAR-mediated A-to-I RNA editing could also shape the phenotype. These two layers of variations have not been systematically combined to study their collective roles in cancers. We collected the high-quality transcriptomes of ten hepatocellular carcinoma (HCC) and the matched control samples. We systematically identified HCC-specific mutations in the exonic regions and profiled the A-to-I RNA editome in each sample. All ten HCC samples had mutations in the CDS of ADAR2 gene (dsRNA-binding domain or catalytic domain). The consequence of these mutations converged to the elevation of ADAR2 efficiency as reflected by the global increase of RNA editing levels in HCC. The up-regulated editing sites (UES) were enriched in the CDS and UTR of oncogenes and tumor suppressor genes (TSG), indicating the possible roles of these target genes in HCC oncogenesis. We present the mutation-ADAR2-UES-oncogene/TSG-HCC axis that explains how mutations at different layers would finally lead to abnormal phenotype. In the light of central dogma, our work provides novel insights into how to fully take advantage of the transcriptome data to decipher the consequence of mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

We downloaded the human reference genome from the Ensembl website (http://ensemblgenomes.org/) (hg38, GRCh38.87). RNA sequencing data (RNA-Seq, transcriptome) of normal/tumor tissues from ten patients were retrieved from NCBI with accession number GSE112705 (Zou et al. 2019). The ten patients suffered from a particular type of liver cancer termed hepatocellular carcinoma (HCC). The matched normal tissue of each individual refers to the adjacent normal liver tissues. The list of oncogenes and TSG was retrieved from cancer gene census website (https://www.sanger.ac.uk/data/cancer-gene-census/). Totally 240 oncogenes and 242 TSG were downloaded.

Abbreviations

ADAR:

Adenosine deaminase acting on RNA

AA:

Amino acid

dsRNA:

Double-stranded RNA

DRBM:

DsRNA-binding domain

HCC:

Hepatocellular carcinoma

CDS:

Coding sequence

UTR:

Untranslated region

UES:

Up-regulated editing site

SNP:

Single nucleotide polymorphism

RPKM:

Reads per kilobase per million mapped reads

TSG:

Tumor suppressor gene

References

  • Cai H, Liu X, Zheng X (2022) RNA editing detection in SARS-CoV-2 transcriptome should be different from traditional SNV identification. J Appl Genet 63:587–594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang S, Li J, Li Q, Yu CP, Xie LL, Wang S (2022) Retrieving the deleterious mutations before extinction: genome-wide comparison of shared derived mutations in liver cancer and normal population. Postgrad Med J 98:584–590

    Article  PubMed  Google Scholar 

  • Chu D, Wei L (2019a) The chloroplast and mitochondrial C-to-U RNA editing in Arabidopsis thaliana shows signals of adaptation. Plant Direct 3:e00169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chu D, Wei L (2019b) Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer 19:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu D, Wei L (2019c) Parsing the synonymous mutations in the maize genome: isoaccepting mutations are more advantageous in regions with codon co-occurrence bias. BMC Plant Biol 19:422

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu D, Wei L (2020) Genome-wide analysis on the maize genome reveals weak selection on synonymous mutations. BMC Genomics 21:333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chu D, Wei L (2021) Context-dependent and -independent selection on synonymous mutations revealed by 1135 genomes of Arabidopsis thaliana. BMC Ecol Evol 21:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (austin) 6:80–92

    Article  PubMed  CAS  Google Scholar 

  • Crick F (1970) Central dogma of molecular biology. Nature 227:561–563

    Article  PubMed  CAS  Google Scholar 

  • Di Giorgio S, Martignano F, Torcia MG, Mattiuz G, Conticello SG (2020) Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. Sci Adv 6:eaab5813

    Article  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  PubMed  CAS  Google Scholar 

  • Duan Y, Cai W, Li H (2023a) Chloroplast C-to-U RNA editing in vascular plants is adaptive due to its restorative effect: testing the restorative hypothesis. RNA 29:141–152

    Article  PubMed  CAS  Google Scholar 

  • Duan Y, Li H, Cai W (2023b) Adaptation of A-to-I RNA editing in bacteria, fungi, and animals. Front Microbiol 14:1204080

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan Y, Ma L, Song F, Tian L, Cai W, Li H (2023c) Autorecoding A-to-I RNA editing sites in the Adar gene underwent compensatory gains and losses in major insect clades. RNA 29:1509–1519

    Article  PubMed  CAS  Google Scholar 

  • Edwards AW (2000) The genetical theory of natural selection. Genetics 154:1419–1426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eisenberg E, Levanon EY (2018) A-to-I RNA editing—immune protector and transcriptome diversifier. Nat Rev Genet 19:473–490

    Article  PubMed  CAS  Google Scholar 

  • Han L, Liang H (2016) RNA editing in cancer: Mechanistic, prognostic, and therapeutic implications. Mol Cell Oncol 3:e1117702

    Article  PubMed  Google Scholar 

  • Han L, Diao L, Yu S, Xu X, Li J, Zhang R, Yang Y, Werner HMJ, Eterovic AK, Yuan Y et al (2015) The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell 28:515–528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimura M (1979) The neutral theory of molecular evolution. Sci Am 241:98–100 (102, 108 passim)

    Article  PubMed  CAS  Google Scholar 

  • Kuehn BM (2008) 1000 Genomes Project promises closer look at variation in human genome. JAMA 300:2715

    Article  PubMed  CAS  Google Scholar 

  • Li M, Wang IX, Li Y, Bruzel A, Richards AL, Toung JM, Cheung VG (2011) Widespread RNA and DNA sequence differences in the human transcriptome. Science 333:53–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Q, Wang Z, Lian J, Schiott M, Jin L, Zhang P, Zhang Y, Nygaard S, Peng Z, Zhou Y et al (2014) Caste-specific RNA editomes in the leaf-cutting ant Acromyrmex echinatior. Nat Commun 5:4943

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Yang X, Wang N, Wang H, Yin B, Yang X, Jiang W (2020a) GC usage of SARS-CoV-2 genes might adapt to the environment of human lung expressed genes. Mol Genet Genomics 295:1537–1546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Yang XN, Wang N, Wang HY, Yin B, Yang XP, Jiang WQ (2020b) The divergence between SARS-CoV-2 and RaTG13 might be overestimated due to the extensive RNA modification. Future Virol 15:341–347

    Article  CAS  Google Scholar 

  • Li Q, Li J, Yu CP, Chang S, Xie LL, Wang S (2021) Synonymous mutations that regulate translation speed might play a non-negligible role in liver cancer development. BMC Cancer 21:388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Licht K, Hartl M, Amman F, Anrather D, Janisiw MP, Jantsch MF (2019) Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Res 47:3–14

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Piskol R, Tan MH, Li JB (2012) Comment on Widespread RNA and DNA sequence differences in the human transcriptome. Science 335:1302 (author reply 1302)

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Liu X, Zhou J, Dong Y, Jiang W, Jiang W (2022) Rampant C-to-U deamination accounts for the intrinsically high mutation rate in SARS-CoV-2 spike gene. RNA 28:917–926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lynch M (2010) Evolution of the mutation rate. Trends Genet 26:345–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma L, Zheng C, Xu S, Xu Y, Song F, Tian L, Cai W, Li H, Duan Y (2023) A full repertoire of Hemiptera genomes reveals a multi-step evolutionary trajectory of auto-RNA editing site in insect Adar gene. RNA Biol 20:703–714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martignano F, Di Giorgio S, Mattiuz G, Conticello SG (2022) Commentary on “Poor evidence for host-dependent regular RNA editing in the transcriptome of SARS-CoV-2.” J Appl Genet 63:423–428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palladino MJ, Keegan LP, O’Connell MA, Reenan RA (2000) dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. RNA 6:1004–1018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng X, Xu X, Wang Y, Hawke DH, Yu S, Han L, Zhou Z, Mojumdar K, Jeong KJ, Labrie M et al (2018) A-to-I RNA editing contributes to proteomic diversity in cancer. Cancer Cell 33(817–828):e817

    Article  Google Scholar 

  • Picardi E, Pesole G (2013) REDItools: high-throughput RNA editing detection made easy. Bioinformatics 29:1813–1814

    Article  PubMed  CAS  Google Scholar 

  • Picardi E, D’Erchia AM, Lo Giudice C, Pesole G (2017) REDIportal: a comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res 45:D750–D757

    Article  PubMed  CAS  Google Scholar 

  • Pinto Y, Buchumenski I, Levanon EY, Eisenberg E (2018) Human cancer tissues exhibit reduced A-to-I editing of miRNAs coupled with elevated editing of their targets. Nucleic Acids Res 46:71–82

    Article  PubMed  CAS  Google Scholar 

  • Rajendren S, Dhakal A, Vadlamani P, Townsend J, Deffit SN, Hundley HA (2021) Profiling neural editomes reveals a molecular mechanism to regulate RNA editing during development. Genome Res 31:27–39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramaswami G, Li JB (2014) RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res 42:D109-113

    Article  PubMed  CAS  Google Scholar 

  • Roth SH, Levanon EY, Eisenberg E (2019) Genome-wide quantification of ADAR adenosine-to-inosine RNA editing activity. Nat Methods 16:1131–1138

    Article  PubMed  CAS  Google Scholar 

  • Savva YA, Jepson JE, Sahin A, Sugden AU, Dorsky JS, Alpert L, Lawrence C, Reenan RA (2012a) Auto-regulatory RNA editing fine-tunes mRNA re-coding and complex behaviour in Drosophila. Nat Commun 3:790

    Article  PubMed  Google Scholar 

  • Savva YA, Rieder LE, Reenan RA (2012b) The ADAR protein family. Genome Biol 13:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen X, Song S, Li C, Zhang J (2022) Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature 606:725–731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Supek F, Minana B, Valcarcel J, Gabaldon T, Lehner B (2014) Synonymous mutations frequently act as driver mutations in human cancers. Cell 156:1324–1335

    Article  PubMed  CAS  Google Scholar 

  • Tan MH, Li Q, Shanmugam R, Piskol R, Kohler J, Young AN, Liu KI, Zhang R, Ramaswami G, Ariyoshi K et al (2017) Dynamic landscape and regulation of RNA editing in mammals. Nature 550:249–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Walkley CR, Li JB (2017) Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biol 18:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xu X, Yu S, Jeong KJ, Zhou Z, Han L, Tsang YH, Li J, Chen H, Mangala LS et al (2017) Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Res 27:1112–1125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu G, Zhang J (2014) Human coding RNA editing is generally nonadaptive. Proc Natl Acad Sci U S A 111:3769–3774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, Feng M, Wang F, Cheng J, Li Z et al (2022) Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612:141–147

    Article  PubMed  CAS  Google Scholar 

  • Yu YY, Li Y, Dong Y, Wang XK, Li CX, Jiang WQ (2021) Natural selection on synonymous mutations in SARS-CoV-2 and the impact on estimating divergence time. Future Virol 16:447–450

    Article  CAS  Google Scholar 

  • Zhang D, Xia J (2020) Somatic synonymous mutations in regulatory elements contribute to the genetic aetiology of melanoma. BMC Med Genomics 13:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zong J, Zhang Y, Guo F, Wang C, Li H, Lin G, Jiang W, Song X, Zhang X, Huang F et al (2022) Poor evidence for host-dependent regular RNA editing in the transcriptome of SARS-CoV-2. J Appl Genet 63:413–421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou Q, Xiao Z, Huang R, Wang X, Wang X, Zhao H, Yang X (2019) Survey of the translation shifts in hepatocellular carcinoma with ribosome profiling. Theranostics 9:4141–4155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the lab members for their previous suggestions to this project.

Funding

No funding was received for this current study.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Wengui Xu. Collection and assembly of data: Jian Li, Chaowei Li. Data analysis and interpretation: Jian Li, Chaowei Li. Manuscript writing: Jian Li, Chaowei Li, Wengui Xu. Final approval of manuscript: Jian Li, Chaowei Li, Wengui Xu.

Corresponding author

Correspondence to Wengui Xu.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Martine Collart.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, C. & Xu, W. Liver cancer-specific mutations in functional domains of ADAR2 lead to the elevation of coding and non-coding RNA editing in multiple tumor-related genes. Mol Genet Genomics 299, 1 (2024). https://doi.org/10.1007/s00438-023-02091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00438-023-02091-5

Keywords

Navigation