Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-02T18:30:52.252Z Has data issue: false hasContentIssue false

Tailoring the motion planning of humanoids in complex arena: a regression-firefly-based approach

Published online by Cambridge University Press:  04 January 2024

Chinmaya Sahu*
Affiliation:
Robotics Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
Dayal R. Parhi
Affiliation:
Robotics Laboratory, Department of Mechanical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
Manoj Kumar Muni
Affiliation:
Department of Mechanical Engineering, Indira Gandhi Institute of Technology, Sarang, 759146, Odisha, India
Saurabh Sameer Kamat
Affiliation:
Robotics Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
*
Corresponding author: Chinmaya Sahu; Email: mechchinu@gmail.com

Abstract

In the current investigation, a two-stage hybridization model has been used for the motion planning of humanoids in complex environmental conditions using regression analysis and the firefly algorithm. In the first step, sensory outputs are fed to the regression model, and an initial turning angle (ITA) is obtained. In the second step, the ITA is again fed as input to the firefly model along with other required inputs, and the final turning angle (FTA) is obtained. The FTA serves as the guiding parameter for the humanoids to reach their desired destinations. The developed motion planning scheme has been implemented on NAO humanoid robots in simulation and experimental platforms. A Petri-Net control strategy has been integrated along with the hybrid scheme while negotiating multiple humanoids in a common platform. The results obtained from the motion planning analysis in simulation and experimental arenas are compared against each other in terms of selected navigational parameters and observed satisfactory agreements. Finally, the proposed hybrid controller is also tested against another standard navigational model and substantial enhancement in the performance has been noticed.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Frank, B., Stachniss, C., Abdo, N. and Burgard, W., “Efficient Motion Planning for Manipulation Robots in Environments with Deformable Objects,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2011) pp. 21802185.Google Scholar
Kim, E., Choi, S. and Oh, S., “Structured kernel subspace learning for autonomous robot navigation,” Sensors 18(2), 582 (2018).Google Scholar
Keshmiri, S. and Payandeh, S., “Regression analysis of multi-rendezvous recharging route in multi-robot environment,” Int. J. Soc. Robot. 4(1), 1527 (2012).Google Scholar
Rouxel, Q., Passault, G., Hofer, L., N’Guyen, S. and Ly, O., “Learning the Odometry on a Small Humanoid Robot,” In: IEEE International Conference on Robotics and Automation (ICRA) (2016) pp. 18101816.Google Scholar
Plagemann, C., Mischke, S., Prentice, S., Kersting, K., Roy, N. and Burgard, W., “A Bayesian regression approach to terrain mapping and an application to legged robot locomotion,” J. Field Robot. 26(10), 789811 (2009).Google Scholar
Xu, Y., Choi, J. and Oh, S., “Mobile sensor network navigation using gaussian processes with truncated observations,” IEEE Trans. Robot. 27(6), 11181131 (2011).Google Scholar
Fentanes, J. P., Dondrup, C. and Hanheide, M., “Navigation Testing for Continuous Integration in Robotics,” In: Proc. UK-RAS Conf. Robot. Auton. Syst. (2017).Google Scholar
Belter, D., Łabęcki, P. and Skrzypczyński, P., “Adaptive motion planning for autonomous rough terrain traversal with a walking robot,” J. Field Robot. 33(3), 337370 (2016).Google Scholar
Kumar, P. B., Sahu, C. and Parhi, D. R., “Intelligent navigation of a self-fabricated biped robot using a regression controller,” Sci. Iran. 27(1), 262272 (2020).Google Scholar
Kumar, P. B., Sahu, C., Parhi, D. R., Pandey, K. K. and Chhotray, A., “Static and dynamic path planning of humanoids using an advanced regression controller,” Sci. Iran. 26(1), 375393 (2019).Google Scholar
Krishnanand, K. N., Amruth, P., Guruprasad, M. H., Bidargaddi, S. V. and Ghose, D., “Glowworm-Inspired Robot Swarm for Simultaneous Taxis Towards Multiple Radiation Sources,” In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA 2006) (2006) pp. 958963.Google Scholar
Patle, B. K., Parhi, D. R., Jagadeesh, A. and Kashyap, S. K., “On firefly algorithm: Optimization and application in mobile robot navigation,” World J. Eng. 14(1), 6576 (2017).Google Scholar
Wang, G., Guo, L., Duan, H., Liu, L. and Wang, H., “A modified firefly algorithm for UCAV path planning,” Int. J. Hybrid Inf. Technol. 5(3), 123144 (2012).Google Scholar
Hidalgo-Paniagua, A., Vega-Rodríguez, M. A., Ferruz, J. and Pavón, N., “Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach,” Soft Comput. 21(4), 949964 (2017).Google Scholar
Fister, I., Fister, I. Jr., Yang, X.-S. and Brest, J., “A comprehensive review of firefly algorithms,” Swarm Evol. Comput. 13, 3446 (2013).Google Scholar
Ali, N., Othman, M. A., Husain, M. N. and Misran, M. H., “A review of firefly algorithm,” ARPN J. Eng. Appl. Sci. 9(10), 17321736 (2014).Google Scholar
Liu, C., Zhao, Y., Gao, F. and Liu, L., “Three-dimensional path planning method for autonomous underwater vehicle based on modified firefly algorithm,” Math. Probl. Eng. 2015(11), 110 (2015). doi: 10.1155/2015/561394.Google Scholar
Christensen, A. L., O’Grady, R. and Dorigo, M., “From fireflies to fault-tolerant swarms of robots,” IEEE Trans. Evol. Comput. 13(4), 754766 (2009).Google Scholar
Brand, M. and Yu, X. H., “Autonomous Robot Path Optimization Using Firefly Algorithm,” In: International Conference on Machine Learning and Cybernetics (ICMLC), vol. 3 (IEEE, 2013) pp. 10281032.Google Scholar
Farahani, S. M., Abshouri, A. A., Nasiri, B. and Meybodi, M. R., “A Gaussian firefly algorithm,” Int. J. Mach. Learn. Comput. 1(5), 448453 (2011).Google Scholar
Saputra, A. A., Botzheim, J., Sulistijono, I. A. and Kubota, N., “Biologically inspired control system for 3-D locomotion of a humanoid biped robot,” IEEE Trans. Syst. Man Cybern. Syst. 46(7), 898911 (2016).Google Scholar
He, W., Ge, W., Li, Y., Liu, Y. J., Yang, C. and Sun, C., “Model identification and control design for a humanoid robot,” IEEE Trans. Syst. Man Cybern. Syst. 47(1), 4557 (2017).Google Scholar
Clever, D., Hu, Y. and Mombaur, K., “Humanoid gait generation in complex environments based on template models and optimality principles learned from human beings,” Int. J. Robot. Res. 37(10), 11841204 (2018). doi: 10.1177/0278364918765620.Google Scholar
Ryu, S. H., Kang, Y., Kim, S. J., Lee, K., You, B. J. and Doh, N. L., “Humanoid path planning from hri perspective: A scalable approach via waypoints with a time index,” IEEE Trans. Cybern. 43(1), 217229 (2013).Google Scholar
Kumar, P. B., Muni, M. K. and Parhi, D. R., “Navigational analysis of multiple humanoids using a hybrid regression-fuzzy logic control approach in complex terrains,” Appl. Soft Comput. 89, 106088 (2020).Google Scholar
Muni, M. K., Parhi, D. R., Kumar, P. B., Sahu, C. and Kumar, S., “Towards motion planning of humanoids using a fuzzy embedded neural network approach,” Appl. Soft Comput. 119, 108588 (2022).Google Scholar
Muni, M. K., Kumar, S., Parhi, D. R. and Pandey, K. K., “Water cycle algorithm: An approach for improvement of navigational strategy of multiple humanoid robots,” Robotica 40(3), 798816 (2022).Google Scholar
Muni, M. K., Parhi, D. R., Kumar, P. B. and Kumar, S., “Motion control of multiple humanoids using a hybridized prim’s algorithm-fuzzy controller,” Soft Comput. 25(2), 11591180 (2021).Google Scholar
Muni, M. K., Parhi, D. R., Kumar, P. B. and Rath, A. K., “Navigational analysis of multiple humanoids using a hybridized rule base-Sugeno fuzzy controller,” Int. J. HR 17(04), 2050017 (2020).Google Scholar
Muni, M. K., Parhi, D. R. and Kumar, P. B., “Improved motion planning of humanoid robots using bacterial foraging optimization,” Robotica 39(1), 123136 (2021).CrossRefGoogle Scholar
Muni, M. K., Parhi, D. R. and Kumar, P. B., “Implementation of grey wolf optimization controller for multiple humanoid navigation,” Comput. Animat. Virtual Worlds 31(3), e1919 (2020).Google Scholar
Kumar, P. B., Sahu, C. and Parhi, D. R., “A hybridized regression-adaptive ant colony optimization approach for navigation of humanoids in a cluttered environment,” Appl. Soft Comput. 68, 565585 (2018).Google Scholar
Sahu, C., Parhi, D. R., Kumar, P. B., Muni, M. K., Chhotray, A. and Pandey, K. K., “Humanoid NAO: A kinematic encounter,” Robotica 39(11), 19972007 (2021).Google Scholar
Kofinas, N., Orfanoudakis, E. and Lagoudakis, M. G., “Complete Analytical Inverse Kinematics for NAO,” In: 13th International Conference on Autonomous Robot Systems (Robotica) (2013) pp. 16.Google Scholar
Sahu, C., Parhi, D. R. and Kumar, P. B., “An approach to optimize the path of humanoids using adaptive ant colony optimization,” J. Bionic Eng. 15(4), 623635 (2018).Google Scholar
Sahu, C., Kumar, P. B. and Parhi, D. R., “An intelligent path planning approach for humanoid robots using adaptive particle swarm optimisation,” Int. J. Artif. Intell. Tools 27(5), 1850015 (2018).Google Scholar
Jánoš, R., Sukop, M., Semjon, J., Tuleja, P., Marcinko, P., Kočan, M., Grytsiv, M., Vagaš, M., Miková, Ľ. and Kelemenová, T., “Stability and dynamic walk control of humanoid robot for robot soccer player,” Machines 10(6), 463 (2022).Google Scholar
Peterson, J. L., Petri Net Theory and the Modeling of Systems (Prentice-Hall, Englewood cliffs, 1981).Google Scholar
Pham, D. T. and Parhi, D. R., “Navigation of multiple mobile robots using a neural network and a Petri Net model,” Robotica 21(1), 7993 (2003).Google Scholar
Chen, C. and Richardson, P., “Mobile robot obstacle avoidance using short memory: A dynamic recurrent neuro-fuzzy approach,” Trans. Inst. Meas. Control 34(2-3), 148–116 (2012).Google Scholar
Wang, F., Qian, Z., Yan, Z., Yuan, C. and Zhang, W., “A novel resilient robot: Kinematic analysis and experimentation,” IEEE Access 8, 28852892 (2020).Google Scholar
Zhang, W. J., Ouyang, P. R. and Sun, Z. H., “A Novel Hybridization Design Principle for Intelligent Mechatronics Systems,” In: Proceedings of International Conference on Advanced Mechatronics (ICAM2010), Osaka, Japan, 2010.5, pp. 6774.Google Scholar
Zhang, T., Zhang, D. and Zhang, W., “Task-based configuration synthesis of an underactuated resilient robot,” Robotics 12(5), 121 (2023).Google Scholar