Skip to main content
Log in

Sliding Mode Pulse-Width Modulation-Based Direct Toque Control for Nine-Switch Inverter Dual-Induction Motor Drive

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes sliding mode pulse-width modulation (SMPWM) for the nine-switch inverter (NSI) as solution for the main drawback of voltage and current distortion. The proposed modulation is based on Lyapunov approach and can directly trigger the nine switches without restrictions and regardless of the operation frequency modes. SMPWM along with modified direct torque control-based sliding mode approach is designed for NSI driving dual-induction motor to obtain fixed switching frequency and low torque ripple. Stability analysis is carried out for each proposed method, and convergence condition depends on the value of dc-bus voltage that can be achieved. The feasibility of the proposed control is verified under load and speed conditions through simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

No data included or analyzed in this article are shared.

Abbreviations

\({V}_{{\text{U}}}\), \( {V}_{{\text{L}}}\) :

Upper and lower output voltages

\({V}_{{\text{dc}}}\) :

Dc-bus voltage

\({V}_{{\text{nU}}}\), \({V}_{{\text{nL}}}\) :

Common mode voltages

\(\left({H}_{{\text{AU}}}, {H}_{{\text{BU}}}, {H}_{{\text{CU}}}\right)\) :

Switching positions of upper stage

\(({H}_{{\text{AM}}}, {H}_{{\text{BM}}}, {H}_{{\text{CM}}})\) :

Switching positions of shared switches

\(({H}_{{\text{AL}}}, {H}_{{\text{BL}}}, {H}_{{\text{CL}}})\) :

Switching positions of lower stage

\(({v}_{{\text{ds}}}, {v}_{{\text{qs}}})\) and \( ({i}_{{\text{ds}}}, {i}_{{\text{qs}}})\) :

Dq components of stator voltages and currents

\({i}_{{\text{abcs}}1}\) , \({i}_{{\text{abcs}}2}\) :

Three-phase stator currents of IM1 and IM2

\(({\Phi }_{{\text{ds}}}, {\Phi }_{{\text{qs}}})\) :

Dq components of stator flux

\(({\Phi }_{\mathrm{\alpha s}1}, {\Phi }_{\mathrm{\beta s}1})\) and \(({\Phi }_{\mathrm{\alpha s}2}, {\Phi }_{\mathrm{\beta s}2})\) :

\(\alpha \beta \) Stator flux components of IM1 and IM2

\({R}_{{\text{s}}}\), \( {R}_{{\text{r}}}\) :

Stator and rotor resistances

\({L}_{{\text{s}}}\) , \({L}_{{\text{r}}}\) , \({L}_{{\text{sr}}}\) :

Stator and rotor inductances, and mutual inductance

\(({\Phi }_{{\text{s}}1}, {\Phi }_{{\text{s}}2})\) :

Stator fluxes modulus of IM1 and IM2

\(({T}_{{\text{em}}1}, {T}_{{\text{em}}2})\) :

Electromagnetic torque of IM1 and IM2

\({\omega }_{{\text{s}}}\) , \(p\) :

Stator pulsation and number of pole pairs

\({\Omega }_{1}\) , \({\Omega }_{2}\) :

Rotor angular speeds of IM1 and IM2

IM1 and IM2:

Upper and lower induction motor

NSI:

Nine-switch inverter

SMPWM:

Sliding mode pulse-width modulation

DTC:

Direct torque control

SMC:

Sliding mode control

References

  • Abbache MA, Tabbache B, Kheloui A (2014) Direct torque control of nine switches inverter-dual induction motors. In: 22nd Mediterranean conference control automation (MED), Palermo, pp 810–815. https://doi.org/10.1109/MED.2014.6961473

  • Azizi M, Mohamadian M, Beiranvand R (2016) A new family of multi-input converters based on three switches leg. IEEE Trans Ind Electron 63(11):6812–6822

    Article  Google Scholar 

  • Chen Y, Wen G, Kang Y (2013) Sliding mode pulse width modulation (SMPWM) for nine-switch converter. In: IEEE international symposium on industrial electronics (ISIE), Taipei, pp 1–6. https://doi.org/10.1109/ISIE.2013.6563653

  • Choudhury A, Mohanty S, Pati S, Kar SK, Swain RK (2020) A Mamdani-FLC based nine switch converter topology for integration and power control of HAS. In: international conference on computational intelligence for smart power system and sustainable energy (CISPSSE), Keonjhar, pp 1–6. https://doi.org/10.1109/CISPSSE49931.2020.9212196

  • Dabour SM, Abdel-Khalik AS, Ahmed S, Massoud A (2021) An optimal PWM technique for dual-output nine-switch boost inverters with minimum passive component count. IEEE Trans Power Electron 36(1):1065–1079

    Article  Google Scholar 

  • Dabour SM, Abdel-Khalik AS, Ahmed S, Massoud A (2019) Carrier-based PWM strategy for Quasi-Z source nine-switch inverters. In: IEEE conference power electron renewable energy (CPERE), Aswan, pp 105–111. https://doi.org/10.1109/CPERE45374.2019.8980225

  • De Andrade FC, Bradaschia F, Limongi LR, Cavalcanti MC (2018) A reduced switching loss technique based on generalized scalar PWM for nine-switch inverters. IEEE Trans Ind Electron 65(1):38–48

    Article  Google Scholar 

  • Dehghan SM, Amiri A, Mohamadian M, Andersen MAE (2013) Modular space-vector pulse-width modulation for nine-switch converters. IET Power Electron 6(3):457–467

    Article  Google Scholar 

  • Diab MS, Elserougi AA, Abdel-Khalik AS, Massoud AM, Ahmed S (2016) A nine-switch-converter-based integrated motor drive and battery charger system for EVs using symmetrical six-phase machines. IEEE Trans Ind Electron 63(9):5326–5335

    Article  Google Scholar 

  • El Ouanjli N, Derouich A, El Ghzizal A, Motahhir S, Chebabhi A, El Mourabit Y, Taoussi M (2019) Modern improvement techniques of direct torque control for induction motor drives—a review. Prot Control Mod Power Syst 4(11):1–12

    Google Scholar 

  • Gao F, Zhang L, Li D, Loh PC, Tang Y, Gao H (2010) Optimal pulsewidth modulation of nine-switch converter. IEEE Trans Power Electron 25(9):2331–2343

    Article  Google Scholar 

  • Gulbudak O, Gokdag M (2019) Asymmetrical multi-step direct model predictive control of nine-switch inverter for dual-output mode operation. IEEE Access 7:164720–164733

    Article  Google Scholar 

  • Hu M, Zeng J, Xu S, Fu C, Qin D (2015) Efficiency study of a dual-motor coupling EV powertrain. IEEE Trans Veh Technol 4(6):2252–2260

    Article  Google Scholar 

  • Jarutus N, Kumsuwan Y (2017) A carrier-based phase-shift space vector modulation strategy for a nine-switch inverter. IEEE Trans Power Electron 32(5):3425–3441

    Article  Google Scholar 

  • Jibhakate CN, Chaudhari MA, Renge MM (2018) Reactive power compensation using induction motor driven by nine switch AC-DC-AC converter. IEEE Access 6:1312–1320

    Article  Google Scholar 

  • Jones M, Vukosavic SN, Dujic D, Levi E, Wright P (2008) Five-leg inverter PWM technique for reduced switch count two-motor constant power applications. IET Electr Power Appl 2(5):275–287

    Article  Google Scholar 

  • Kirakosyan A, Moursi MSE, Khadkikar V (2017) Fault ride through and grid support topology for the VSC-HVDC connected offshore wind farms. IEEE Trans Power Delivery 32(3):1592–1604

    Article  Google Scholar 

  • Kominami T, Fujimoto Y (2007) A novel nine-switch inverter for independent control of two three-phase loads. In: IEEE industry applications annual meeting (IAS), New Orleans, pp 2346–2350. https://doi.org/10.1109/07IAS.2007.354

  • Lee Y, Ha JI (2016) Control method of mono inverter dual parallel drive system with interior permanent magnet synchronous machines. IEEE Trans Power Electron 31(10):7077–7086

    Google Scholar 

  • Limongi L, Bradaschia F, Azevedo G, Genu L, Filho LS (2014) Dual hybrid power filter based on a nine-switch inverter. Electr Power Syst Res 117:154–162

    Article  Google Scholar 

  • Liu D, Zhang X, Pan L, Li A (2020) Modelling and control of nine-switch converter-based DFIG wind power system. J Electr Eng Technol 15:2587–2599

    Article  Google Scholar 

  • Matsuse K, Kezuka N, Oka K (2011) Characteristics of independent two induction motor drives fed by a four-leg inverter. IEEE Trans Ind Appl 47(5):2125–2134

    Article  Google Scholar 

  • Pan L, Zhang J, Zhang J, Pang Y, Wang B, Wang K, Xu D (2020) A novel space-vector modulation method for nine-switch converter. IEEE Trans Power Electron 35(2):1789–1804

    Article  Google Scholar 

  • Pinjala MK, Bhimasingu R (2020) Improving the dc-link utilization of nine-switch boost inverter suitable for six-phase induction motor. IEEE Trans Transp Electrif 6(3):1177–1187

    Article  Google Scholar 

  • Qin Z, Loh PC, Blaabjerg F (2015) Application criteria for nine-switch power conversion systems with improved thermal performance. IEEE Trans Power Electron 30(8):4608–4620

    Article  Google Scholar 

  • Qin Z, Loh PC, Blaabjerg F (2014) Power loss benchmark of nine-switch converters in three-phase online-UPS application. In: IEEE energy conversion congress and exposition (ECCE), Pittsburgh, pp 1180–1187. https://doi.org/10.1109/ECCE.2014.6953534

  • Reusser CA (2016) Full-electric ship propulsion, based on a dual nine-switch inverter topology for dual three-phase induction motor drive. In: IEEE transportation electrification conference and expo (ITEC), Dearborn, pp 1–6. https://doi.org/10.1109/ITEC.2016.7520266

  • Shamlou AR, Feyzi MR, Tohidi S, Valizadeh M (2017) Simultaneous space vector modulation direct torque control of two induction motors used in electric vehicles by a nine-switch inverter. J Eng Sci Technol 12(12):3376–3397

    Google Scholar 

  • Tan S, Yang J, Zhao X, Yang W, Yu W, Khajepour A (2021) Power distribution strategy development and optimization of an integrated dual-motor transmission for electric dump truck. IEEE Trans Transp Electrif 7(3):1964–1975

    Article  Google Scholar 

  • Tseng S, Liu T, Hsu J, Ramelan LR, Firmansyah E (2015) Implementation of online maximum efficiency tracking control for a dual-motor drive system. IET Electr Power Appl 9(7):449–458

    Article  Google Scholar 

  • Wei J, Zhang T, Shi L, Zhou B (2019) Dual-stator doubly salient electromagnetic motor driving system utilizing a nine-switch converter. IEEE Trans Ind Appl 55(2):1550–1560

    Article  Google Scholar 

  • Wen G, Chen Y, Zhong Z, Kang Y (2016) Dynamic voltage and current assignment strategies of nine-switch-converter-based DFIG wind power system for low-voltage ride-through (LVRT) under symmetrical grid voltage dip. IEEE Trans Ind Appl 52(4):3422–3434

    Article  Google Scholar 

  • Zhang L, Loh P, Gao F (2012) An integrated nine-switch power conditioner for power quality enhancement and voltage sag mitigation. IEEE Trans Power Electron 27(3):1177–1190

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The research is the authors’ own work and is not supported by any other party.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to design the modulation and direct torque control based on the sliding mode approach, with simulation and discussion of the obtained results, as well as the redaction of article. They read and approved the final manuscript.

Corresponding author

Correspondence to Mohamed Bounadja.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bounadja, M., Djahbar, A. Sliding Mode Pulse-Width Modulation-Based Direct Toque Control for Nine-Switch Inverter Dual-Induction Motor Drive. Iran J Sci Technol Trans Electr Eng (2024). https://doi.org/10.1007/s40998-023-00687-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40998-023-00687-6

Keywords

Navigation