Skip to main content
Log in

Preparation and characterization of new antifouling coating based on alkyd paint modified with hydrophobic cationic biocide

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

New water-immiscible cationic biocide 1-dodecylpyridinium dodecylbenzenesulfonate (PyrC12-DBS) has been synthesized and tested as potential antifouling agent for commercial alkyd paint PP-115 (Ukraine). The modified PP-115/PyrC12-DBS coatings containing 8% and 16% (w/w) of PyrC12-DBS were prepared by dissolution directly of the cationic biocide into the PP-115 paint. Once the stainless steel bars were painted, the surface wettability of the coating was found to be significantly increased when modified with cationic biocide. The results of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) studies indicate high homogeneity of the modified coatings. Infrared analysis revealed hydrogen bonding between ester groups of alkyd resin and pyridinium cations of PyrC12-DBS. The plasticizing effect of the cationic biocide on the alkyd binder has also been revealed by differential scanning calorimetry analysis. According to spectrophotometric analysis data, PyrC12-DBS has excellent resistance to leaching from protective coatings into water. Antibiofilm efficiency of PyrC12-DBS was evaluated by assessing the capability of two biofilm-forming model strains, namely Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa PA01, to form attached biofilms on the surface coated with modified alkyd paint. A significant decrease in biofilm metabolic activity, as well as in cell biomass, was determined for PP-115/PyrC12-DBS (16%) coatings. The antifouling activity was evaluated by exposure to experimental substrates in freshwater (Dnipro River) for 143 days. The surface of PP-115/PyrC12-DBS (16%) coatings showed an almost 13-fold reduction of total biomass formed by Dreissenidae mussels compared with control substrates. Overall, the obtained data indicate that the contact-active protective coatings based on water-insoluble polymer matrix and water-insoluble cationic biocide may effectively resist biofouling at relatively high biocide content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Liu, D, Shu, H, Zhou, J, Bai, X, Cao, P, “Research Progress on New Environmentally Friendly Antifouling Coatings in Marine Settings: A Review.” Biomimetics, 8 (2) 200 (2023)

    Article  CAS  Google Scholar 

  2. Del Grosso, CA, McCarthy, TW, Clark, CL, Cloud, JL, Wilker, JJ, “Managing Redox Chemistry to Deter Marine Biological Adhesion.” Chem. Mater., 28 6791–6796 (2016)

    Article  Google Scholar 

  3. Faria, SI, Teixeira-Santos, R, Gomes, LC, Silva, ER, Morais, J, Vasconcelos, V, Mergulhão, FJM, “Experimental Assessment of the Performance of Two Marine Coatings to Curb Biofilm Formation of Microfoulers.” Coatings, 10 893 (2020)

    Article  CAS  Google Scholar 

  4. Tu, C, Chen, T, Zhou, Q, Liu, Y, Wei, J, Waniek, JJ, Luo, Y, “Biofilm Formation and Its Influences on the Properties of Microplastics as Affected by Exposure Time and Depth in the Seawater.” Sci. Total Environ., 734 139237 (2020)

    Article  CAS  Google Scholar 

  5. Gormley, K, McLellan, F, McCabe, C, Hinon, C, Ferris, J, Kline, DI, Scott, BE, “Automated Image Analysis of Offshore Infrastructure Marine Biofouling.” J. Mar. Sci. Eng., 6 2 (2018)

    Article  Google Scholar 

  6. Rao, TS, “Biofouling in Industrial Water Systems.” In: Amjad, Z, Demadis, KD (eds.) Minerals Scales and Deposits, pp. 123–140. Elsevier, New Jersey (2015)

    Google Scholar 

  7. Mathew, NT, Kronholm, J, Bertilsson, K, Despeisse, M, Johansson, B, “Environmental and Economic Impacts of Biofouling on Marine and Coastal Heat Exchangers.” In: Kishita, Y, Matsumoto, M, Inoue, M, Fukushige, S (eds.) EcoDesign and Sustainability II. Sustainable Production, Life Cycle Engineering and Management. Springer, Singapore (2021)

    Google Scholar 

  8. Liu, S, Kee, Y-H, Shang, B, Papanikolaou, A, “Assessment of the Economic, Environmental and Safety Impact of Biofouling on a Ship’s Hull and Propeller.” Ocean Eng., 285 115481 (2023)

    Article  Google Scholar 

  9. Lindholdt, A, Dam-Johansen, K, Olsen, SM, Yebra, DM, Kiil, S, “Effects of Biofouling Development on Drag Forces of Hull Coatings for Ocean-Going Ships: A Review.” J. Coat. Technol. Res., 12 (3) 415–444 (2015)

    Article  CAS  Google Scholar 

  10. Dong, M, Liu, L, Wang, D, Li, M, Yang, J, Chen, J, “Synthesis and Properties of Self-Polishing Antifouling Coatings Based on BIT-Acrylate Resins.” Coatings, 12 891 (2022)

    Article  CAS  Google Scholar 

  11. Olsen, SM, Yebra, DM, “On the Use of the Term ‘Self-Polishing’ for Antifouling Paints.” Prog. Org. Coat., 76 1699–1700 (2013)

    Article  Google Scholar 

  12. Ytreberg, E, Lagerström, M, Nöu, S, Wiklund, A-K, “Environmental Risk Assessment of Using Antifouling Paints on Pleasure Crafts in European Union Waters.” J. Environ. Manage., 281 111846 (2021)

    Article  CAS  Google Scholar 

  13. Lagerström, M, Ytreberg, E, Wiklund, A-K, “Antifouling Paints Leach Copper in Excess–Study of Metal Release Rates and Efficacy Along a Salinity Gradient.” Water Res., 186 116383 (2020)

    Article  Google Scholar 

  14. Cima, F, Varello, R, “Potential Disruptive Effects of Copper-Based Antifouling Paints on the Biodiversity of Coastal Macrofouling Communities.” Environ. Sci. Pollut. Res., 30 8633–8646 (2023)

    Article  CAS  Google Scholar 

  15. Miller, RJ, Adeleye, AS, Page, HM, Kui, L, Lenihan, HS, Keller, AA, “Nano and Traditional Copper and Zinc Antifouling Coatings: Metal Release and Impact on Marine Sessile Invertebrate Communities.” J. Nanopart. Res., 22 129 (2020)

    Article  CAS  Google Scholar 

  16. Lagerström, M, Ferreira, J, Ytreberg, E, Eriksson-Wiklund, A-K, “Flawed Risk Assessment of Antifouling Paints Leads to Exceedance of Guideline Values in Baltic Sea Marinas.” Environ. Sci. Pollut. Res., 27 27674–27687 (2020)

    Article  Google Scholar 

  17. Guardiola, FA, Cuesta, A, Meseguer, J, Esteban, MA, “Risks of Using Antifouling Biocides in Aquaculture.” Int. J. Mol. Sci., 13 1541–1560 (2012)

    Article  CAS  Google Scholar 

  18. Onduka, T, Ojima, D, Ito, M, Ito, K, Mochida, K, Fujii, K, “Toxicity of the Antifouling Biocide Sea-Nine 211 to Marine Algae, Crustacea, and a Polychaete.” Fish Sci., 79 999–1006 (2013)

    Article  CAS  Google Scholar 

  19. Silva, ER, Tulcidas, AV, Ferreira, O, Bayón, R, Igartua, A, Mendoza, G, Mergulhão, FJM, Faria, SI, Gomes, LC, Carvalho, S, Bordado, JCM, “Assessment of the Environmental Compatibility and Antifouling Performance of an Innovative Biocidal and Foul-release Multifunctional Marine Coating.” Environ. Res., 198 111219 (2021)

    Article  CAS  Google Scholar 

  20. Machate, O, Dellen, J, Schulze, T, Wentzky, VC, Krauss, M, Brack, W, “Evidence for Antifouling Biocides as One of the Limiting Factors for the Recovery of Macrophyte Communities in Lakes of Schleswig-Holstein.” Environ. Sci. Eur., 33 57 (2021)

    Article  CAS  Google Scholar 

  21. Lewis, K, Klibanov, AM, “Surpassing Nature: Rational Design of Sterile-Surface Materials.” Trends Biotechnol., 23 (7) 343–348 (2005)

    Article  CAS  Google Scholar 

  22. Cuervo-Rodríguez, R, López-Fabal, F, Gómez-Garcés, JL, Muñoz-Bonilla, A, Fernández-García, M, “Contact Active Antimicrobial Coatings Prepared by Polymer Blending.” Macromol. Biosci., 17 1700258 (2017)

    Article  Google Scholar 

  23. Izmaylov, B, Di Gioia, D, Markova, G, Aloisio, I, Colonna, M, Vasnev, V, “Imidazolium Salts Grafted on Cotton Fibers for Long-Term Antimicrobial Activity.” React. Funct. Polym., 87 22–28 (2015)

    Article  CAS  Google Scholar 

  24. Poverenov, E, Klein, M, “Formation of Contact Active Antimicrobial Surfaces by Covalent Grafting of Quaternary Ammonium Compounds.” Colloids Surf. B: Biointerfaces, 169 195–205 (2018)

    Article  Google Scholar 

  25. Reddy, GKK, Nancharaiah, YV, “Alkylimidazolium Ionic Liquids for Biofilm Control: Experimental Studies on Controlling Multispecies Biofilms in Natural Waters.” J. Mol. Liq., 336 116859 (2021)

    Article  Google Scholar 

  26. Cornellas, A, Perez, L, Comelles, F, Ribosa, I, Manresa, A, “Self-Aggregation and Antimicrobial Activity of Imidazolium and Pyridinium Based Ionic Liquids in Water Solutions.” J. Colloid Interface Sci., 355 164–171 (2011)

    Article  CAS  Google Scholar 

  27. Vereshchagin, AN, Frolov, NA, Egorova, KS, Seitkalieva, MM, Ananikov, VP, “Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials.” Int. J. Mol. Sci., 22 6793 (2021)

    Article  CAS  Google Scholar 

  28. Bergamo, VZ, Donato, RK, Dalla Lana, DF, Donato, KJZ, Ortega, GG, Schrekker, HS, Fuentefria, AM, “Imidazolium Salts as Antifungal Agents: Strong Antibiofilm Activity Against Multidrug-Resistant Candida tropicalis Isolates.” Lett. Appl. Microbiol., 60 66–67 (2014)

    Article  Google Scholar 

  29. Reddy, GKK, Nancharaiah, YV, Venugopalan, VP, “Long Alkyl-Chain Imidazolium Ionic Liquids: Antibiofilm Activity Against Phototrophic Biofilms.” Colloids Surf. B. Biointerfaces., 155 487–496 (2017)

    Article  CAS  Google Scholar 

  30. Semenyuta, I, Trush, M, Kovalishyn, V, Rogalsky, S, Hodyna, D, Karpov, P, Xia, Z, Tetko, I, Metelytsia, L, “Structure-Activity Relationship Modeling and Experimental Validation of the Imidazolium and Pyridinium Based Ionic Liquids as Potential Antibacterials of MDR Acinetobacter baumannii and Staphylococcus aureus.Int. J. Mol. Sci., 22 563 (2021)

    Article  CAS  Google Scholar 

  31. Gilbert, P, Moore, LE, “Cationic Antiseptics: Diversity of Action Under a Common Epithet.” J. Appl. Microbiol., 99 703–715 (2005)

    Article  CAS  Google Scholar 

  32. Tischer, M, Pradel, G, Ohlsen, K, Holzgrabe, U, “Quaternary Ammonium Salts and Their Antimicrobial Potential: Targets or Nonspecific Interactions?” Chem. Med. Chem., 7 22–31 (2012)

    Article  CAS  Google Scholar 

  33. Reddy, GKK, Rajitha, K, Nancharaiah, YV, “Antibiofouling Potential of 1-Alkyl-3-Methylimidazolium Ionic Liquids: Studies Against Biofouling Barnacle Larvae.” J. Mol. Liq., 302 112497 (2020)

    Article  CAS  Google Scholar 

  34. Piazza, V, Dragić, I, Cepčić, K, Faimali, M, Garaventa, F, Turk, T, Berne, S, “Antifouling Activity of Synthetic Alkylpyridinium Polymers Using the Barnacle Model.” Mar. Drugs, 12 1959–1976 (2014)

    Article  Google Scholar 

  35. Siedenbiedel, F, Tiller, JC, “Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles.” Polymers, 4 46–71 (2012)

    Article  CAS  Google Scholar 

  36. Walczak, M, Richert, A, Burkowska-But, A, “The Effect of Polyhexamethylene Guanidine Hydrochloride (PHMG) Derivatives Introduced into Polylactide (PLA) on the Activity of Bacterial Enzymes.” J. Ind. Microbiol. Biotechnol., 41 1719–1724 (2014)

    Article  CAS  Google Scholar 

  37. Rogalsky, S, Bardeau, J-F, Wu, H, Lyoshina, L, Bulko, O, Tarasyuk, O, Makhno, S, Cherniavska, T, Kyselov, Y, Koo, JH, “Structural, Thermal and Antibacterial Properties of Polyamide 11/Polymeric Biocide Polyhexamethylene Guanidine Dodecylbenzenesulfonate Composites.” J. Mater. Sci., 51 7716–7730 (2016)

    Article  CAS  Google Scholar 

  38. Ghamrawi, S, Bouchara, J-P, Tarasyuk, O, Rogalsky, S, Lyoshina, L, Bulko, O, Bardeau, J-F, “Promising Silicones Modified with Cationic Biocides for the Development of Antimicrobial Medical Devices.” Mater. Sci. Eng. C, 75 969–979 (2017)

    Article  CAS  Google Scholar 

  39. Swiontek Brzezinska, M, Walczak, M, Jankiewizs, U, Pejchalová, M, “Antimicrobial Activity of Polyhexamethylene Guanidine Derivatives Introduced into Polycaprolactone.” J. Polym. Environ., 26 (2) 589–595 (2018)

    Article  Google Scholar 

  40. Moshynets, O, Bardeau, J-F, Tarasyuk, O, Makhno, S, Cherniavska, T, Dzhuzha, O, Potters, G, Rogalsky, S, “Antibiofilm Activity of Polyamide 11 Modified with Thermally Stable Polymeric Biocide Polyhexamethylene Guanidine 2-Naphtalenesulfonate.” Int. J. Mol. Sci., 20 (2) 348 (2019)

    Article  Google Scholar 

  41. Nigmatullin, R, Gao, F, Konovalova, V, “Permanent, Non-Leaching Antimicrobial Polyamide Nanocomposites Based on Organoclays Modified with a Cationic Polymer.” Macromol. Mater. Eng., 294 795–805 (2009)

    Article  CAS  Google Scholar 

  42. Inásio, ÂS, Domingues, NS, Nunes, A, Martins, PT, Moreno, MJ, Estronca, LM, Fernandes, R, Moreno, AJM, Borrego, MJ, Gomes, JP, Vaz, WLC, Vieira, OV, “Quaternary Ammonium Surfactant Structure Determines Selective Toxicity Towards Bacteria: Mechanism of Action and Clinical Implications in Antibacterial Prophylaxis.” J. Antimicrob. Chemother., 71 641–654 (2016)

    Article  Google Scholar 

  43. Trush, M, Metelytsia, L, Semenyuta, I, Kalashnikova, L, Papeykin, O, Venger, I, Tarasyuk, O, Bodachivska, L, Blagodatnyi, V, Rogalsky, S, “Reduced Ecotoxicity and Improved Biodegradability of Cationic Biocides Based on Ester-Functionalized Pyridinium Ionic Liquids.” Environ. Sci. Poll. Res., 26 (5) 4878–4889 (2019)

    Article  CAS  Google Scholar 

  44. Cao, Y, Cen, Y, Sun, X, Mu, T, “Quantification of Ionic Liquids Concentration in Water and Qualification of Conjugated and Inductive Effects of Ionic Liquids by UV Spectroscopy.” Clean Soil Air Water, 42 1162–1169 (2014)

    Article  CAS  Google Scholar 

  45. Volynets, GP, Barthels, F, Hammerschmidt, SJ, Moshynets, OV, Lukashov, SS, Starosyla, SA, Vyshniakova, HV, Iungin, OS, Bdzhola, VG, Prykhoďko, AO, Syniugin, AR, Sapelkin, VM, Yarmoluk, SM, Schirmeister, T, “Identification of Novel Small-Molecular Inhibitors of Staphylococcus aureus Sortase A Using Hybrid Virtual Screening.” J. Antibiot., 75 321–332 (2022)

    Article  CAS  Google Scholar 

  46. Protasov, A, Bardeau, J-F, Morozovskaya, I, Boretska, M, Cherniavska, T, Petrus, L, Tarasyuk, O, Metelytsia, L, Kopernik, I, Kalashnikova, L, Dzhuzha, O, Rogalsky, S, “New Promising Antifouling Agent Based on Polymeric Biocide Polyhexamethylene Guanidine Molybdate.” Environ. Toxicol. Chem., 36 (9) 2543–2551 (2017)

    Article  CAS  Google Scholar 

  47. Potangale, M, Das, A, Kapoor, S, Tiwari, S, “Effect of Anion and Alkyl Chain Length on the Structure and Interactions of N-Alkyl Pyridinium Ionic Liquids.” J. Mol. Liq., 240 694–707 (2017)

    Article  CAS  Google Scholar 

  48. Mokti, N, Borhan, A, Nur, S, Zaine, A, Fatimah, H, Zaid, M, “Synthesis and Characterisation of Pyridinium-Based Ionic Liquid as Activating Agent in Rubber Seed Shell Activated Carbon Production for CO2 Capture.” J. Adv. Res. Fluid Mech. Therm. Sci., 82 85–95 (2021)

    Google Scholar 

  49. Bardeau, J-F, Parikh, AN, Beers, JD, Swanson, BI, “Phase Behavior of a Structurally Constrained Organic-Inorganic Crystal: Temperature-Dependent Infrared Spectroscopy of Silver n-Dodecanethiolate.” J. Phys. Chem. B, 104 627–635 (2000)

    Article  CAS  Google Scholar 

  50. Xu, ZP, Braterman, PS, “High Affinity of Dodecylbenzene Sulfonate for Layered Double Hydroxide and Resulting Morphological Changes.” J. Mater. Chem., 13 268–273 (2003)

    Article  CAS  Google Scholar 

  51. Sperline, RP, Yuan Song, Y, Freiser, H, “Fourier Transform Infrared Attenuated Total Reflection Linear Dichroism Study of Sodium Dodecylbenzenesulfonate Adsorption at the Al2O3/Water Interface Using Al2O3-Coated Optics.” Langmuir, 10 31–44 (1994)

    Article  Google Scholar 

  52. Shishlov, NM, Khursan, SL, “Effect of Ion Interactions on the IR Spectrum of Benzenesulfonate Ion. Restoration of Sulfonate Ion Symmetry in Sodium Benzenesulfonate Dimer.” J. Mol. Struct., 1123 360–366 (2016)

    Article  CAS  Google Scholar 

  53. Bumbac, M, Zaharescu, T, Nicolescu, CM, “Thermal and Radiation Stability of Alkyd Based Coatings Used as Insulators in the Electrical Rotating Machines.” J. Sci. Arts, 1 (38) 119–130 (2017)

    Google Scholar 

  54. Jones, GC, Jackson, B, Infrared Transmission Spectra of Carbonate Minerals. Springer, Dordrecht, Netherlands (1993)

    Book  Google Scholar 

  55. White, WB, “The Carbonate Minerals.” In: Farmer, VC (ed.) The Infrared Spectra of Minerals, pp. 227–284. Mineralogical Society of London (1974)

    Chapter  Google Scholar 

  56. Badou, A, Pont, S, Auzoux-Bordenave, S, Lebreton, M, Bardeau, J-F, “New Insight on Spatial Localization and Microstructures of Calcite-Aragonite Interfaces in Adult Shell of Haliotis tuberculata: Investigations of Wild and Farmed Abalones by FTIR and Raman Mapping.” J. Struct. Biol., 214 107854 (2022)

    Article  CAS  Google Scholar 

  57. Zhang, Y, He, H, Zhang, S, Fan, M, “Hydrogen-Bonding Interactions in Pyridinium-Based Ionic Liquids and Dimethyl Sulfoxide Binary Systems: A Combined Experimental and Computational Study.” ACS Omega, 3 (2) 1823–1833 (2018)

    Article  CAS  Google Scholar 

  58. Law, K-Y, “Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right.” J. Phys. Chem. Lett., 5 686–688 (2014)

    Article  CAS  Google Scholar 

  59. Pardo, IJ, van der Ven, LGJ, van Benthem, RATM, de With, G, Esteves, ACC, “Hydrophilic Self-replenishing Coatings with Long-term Water Stability for Anti-Fouling Applications.” Coatings, 8 184 (2018)

    Article  Google Scholar 

  60. Pistone, A, Scolaro, C, Visco, A, “Mechanical Properties of Protective Coatings Against Marine Fouling: A Review.” Polymers, 13 173 (2021)

    Article  CAS  Google Scholar 

  61. Qiu, H, Feng, K, Gapeeva, A, Meurisch, K, Kaps, S, Li, X, Yu, L, Mishra, YK, Adelung, R, Baum, M, “Functional Polymer Materials for Modern Marine Biofouling Control.” Prog. Polym. Sci., 127 101516 (2022)

    Article  CAS  Google Scholar 

  62. Moshynets, OV, Spiers, AJ, “Viewing Biofilms Within the Larger Context of Bacterial Aggregations.” In: Dhanasekaran, D, Thajuddin, N (eds.). Microbial Biofilms–Importance and Applications, pp 3-22. InTech Press (2016). https://doi.org/10.5772/61499

    Chapter  Google Scholar 

  63. Ong, KS, Mawang, CI, Daniel-Jambun, D, Lim, YY, Lee, SM, “Current Anti-Biofilm Strategies and Potential of Antioxidants in Biofilm Control.” Expert Rev. Anti-Infect. Ther., 16 855–864 (2018)

    Article  CAS  Google Scholar 

  64. Liu, X, Tong, W, Wu, Z, Jiang, W, “Poly(N-vinylpyrrolidone)-Grafted Poly(dimethylsiloxane) Surfaces with Tunable Microtopography and Anti-Biofouling Properties.” RSC Adv., 3 4716–4722 (2013)

    Article  CAS  Google Scholar 

  65. Kalia, VC, “Quorum Sensing Inhibitors: An Overview.” Biotechnol. Adv., 31 224–245 (2013)

    Article  CAS  Google Scholar 

  66. Bhattarai, HD, Ganti, VS, Paudel, B, Lee, YK, Hong, Y-K, Shin, HW, “Isolation of Antifouling Compounds from the Marine Bacterium, Shewanella Oneidensis SCH0402.” World J. Microbiol. Biotechnol., 23 243–249 (2007)

    Article  CAS  Google Scholar 

  67. Bazes, A, Silkina, A, Douzenel, P, Faÿ, F, Kervarec, N, Morin, D, Berge, J-P, Bourgougnon, N, “Investigation of the Antifouling Constituents from the Brown Alga Sargassum Muticum (Yendo) Fensholt.” J. Appl. Phycol., 21 395–403 (2009)

    Article  CAS  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

SR and OM were involved in conceptualization; J-FB and OP were involved in methodology and data curation; OM, J-FB, OD, OT, AH, AMD, and IM were involved in investigation; YL was involved in formal analysis; and SR and J-FB were involved in writing–original draft preparation.

Corresponding author

Correspondence to Sergiy Rogalsky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2163 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogalsky, S., Moshynets, O., Dzhuzha, O. et al. Preparation and characterization of new antifouling coating based on alkyd paint modified with hydrophobic cationic biocide. J Coat Technol Res (2024). https://doi.org/10.1007/s11998-023-00862-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11998-023-00862-8

Keywords

Navigation