Skip to main content
Log in

Improved quantitative analysis of tenuifolin using hydrolytic continuous-flow system to build prediction models for its content based on near-infrared spectroscopy

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

This study used two types of analyses and statistical calculations on powdered samples of Polygala root (PR) and Senega root (SR): (1) determination of saponin content by an independently developed quantitative analysis of tenuifolin content using a flow reactor, and (2) near-infrared spectroscopy (NIR) using crude drug powders as direct samples for metabolic profiling. Furthermore, a prediction model for tenuifolin content was developed and validated using multivariate analysis based on the results of (1) and (2). The goal of this study was to develop a rapid analytical method utilizing the saponin content and explore the possibility of quality control through a wide-area survey of crude drugs using NIR spectroscopy. Consequently, various parameters and appropriate wavelengths were examined in the regression analysis, and a model with a reasonable contribution rate and prediction accuracy was successfully developed. In this case, the wavenumber contributing to the model was consistent with that of tenuifolin, confirming that this model was based on saponin content. In this series of analyses, we have succeeded in developing a model that can quickly estimate saponin content without post-processing and have demonstrated a brief way to perform quality control of crude drugs in the clinical field and on the market.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lacaille-Dubois MA, Delaude C, Mitaine-Offer AC (2020) A review on the phytopharmacological studies of the genus Polygala. J Ethnopharmacol 249:112417. https://doi.org/10.1016/j.jep.2019.112417

    Article  CAS  PubMed  Google Scholar 

  2. Ministry of Health, Welfare, and Labor of Japan (2022) The Japanese Pharmacopoeia, 18th ed., Ministry of Health, Welfare, and Labor of Japan, Tokyo, Japan

  3. Zhao X, Cui Y, Wu P et al (2020) Polygalae Radix: A review of its traditional uses, phytochemistry, pharmacology, toxicology, and pharmacokinetics. Fitoterapia 147:104759. https://doi.org/10.1016/j.fitote.2020.104759

    Article  CAS  PubMed  Google Scholar 

  4. Katselis GS, Estrada A, Gorecki DKJ, Barl B (2007) Adjuvant activities of saponins from the root of Polygala senega L. Can J Physiol Pharmacol 85:1184–1194. https://doi.org/10.1139/Y07-109

    Article  CAS  PubMed  Google Scholar 

  5. Uchikura T, Sugiwaki H, Yoshimura M et al (2018) Characterization of UV-sensitive marker constituents of Polygala root for TLC: applications in quality control of single crude drug extract preparations. Chem Pharm Bull 66:1174–1180. https://doi.org/10.1248/cpb.c18-00616

    Article  CAS  Google Scholar 

  6. Li J, Dong X, Jiang Y et al (2007) Simultaneous determination of phenols in radix Polygalae by high performance liquid chromatography: quality assurance of herbs from different regions and seasons. J Sep Sci 30:2583–2589. https://doi.org/10.1002/jssc.200700118

    Article  CAS  PubMed  Google Scholar 

  7. Yang F, Yu H, Chai X et al (2018) Illumination on “reserving phloem and discarding xylem” and quality evaluation of radix polygalae by determining oligosaccharide esters, saponins, and xanthones. Molecules 23:836. https://doi.org/10.3390/molecules23040836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu D, He J, Jiang Y, Yang B (2015) Quality analysis of Polygala tenuifolia root by ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. J Food Drug Anal 23:144–151. https://doi.org/10.1016/j.jfda.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  9. Chen SL, Lin LL, Chen SB et al (2005) Quantitative determination of nine xanthones in Polygala caudata and fingerprinting of Polygala L. by HPLC. J Liq Chromatogr Relat Technol 28:2953–2963. https://doi.org/10.1080/10826070500274588

    Article  CAS  Google Scholar 

  10. Xu R, Mao F, Zhao Y et al (2017) UPLC quantitative analysis of multi-components by single marker and quality evaluation of polygala tenuifolia wild. Extracts Molecules 22:2276. https://doi.org/10.3390/molecules22122276

    Article  CAS  PubMed  Google Scholar 

  11. Hayashi S, Kameoka H (1995) Volatile Compounds of Polygala senega L. var. latifolia Torrey et Gray Roots. Flavour Fragr J 10:273–280. https://doi.org/10.1002/ffj.2730100408

    Article  CAS  Google Scholar 

  12. Tsukitani Y, Kawanishi S, Shoji J (1973) Studies on the Constituents of senegae Radix. II. the structure of Senegin-II, a saponin from Polygala senega LINNE var latifolia TORRY et GRAY. Chem Pharm Bull 21(4):791–799. https://doi.org/10.1248/cpb.21.791

    Article  CAS  Google Scholar 

  13. Tsukitani Y, Shoji J, (1973) Studies on the Constituents of Senegae Radix. III. The Structures of Senegin-III and -IV, Saponins from Polygala senega LINNE var. latifolia TORRY et GRAY. Chem Pharm Bull 21 (7): 1564–1574. https://doi.org/10.1248/cpb.21.1564

  14. Yoshikawa M, Murakami T, Ueno T et al (1995) Bioactive Saponins and glycosides I. senegae Radix (1): E-senegasaponins a and b and Z-senegasaponins a and b their inhibitory effect on alcohol absorption and hypoglycemic activity. Chem Pharm Bull 43(12):2115–2122. https://doi.org/10.1248/cpb.43.2115

    Article  CAS  Google Scholar 

  15. Yoshikawa M, Murakami T, Matsuda H et al (1996) Bioactive Saponins and glycosides II senegae radix (2): chemical structures, hypoglycemic activity and ethanol absorption-Inhibitory Effect of E-senegasaponin c Z-senegasaponin c and Z-senegins II III and IV. Chem Pharm Bull 44(7):1305–1313. https://doi.org/10.1248/cpb.44.1305

    Article  CAS  Google Scholar 

  16. Arai M, Hayashi A, Sobou M et al (2011) Anti-angiogenic effect of triterpenoidal saponins from Polygala senega. J Nat Med 65:149–156. https://doi.org/10.1007/s11418-010-0477-7

    Article  CAS  PubMed  Google Scholar 

  17. Estrada A, Katselis GS, Laarveld B, Barl B (2000) Isolation and evaluation of immunological adjuvant activities of saponins from Polygala senega L. Comp Immunol Microbiol Infect Dis 23:27–43. https://doi.org/10.1016/S0147-9571(99)00020-X

    Article  CAS  PubMed  Google Scholar 

  18. Committee of the Chinese Pharmocopeia. (2020) The Chinese Pharmacopoeia; China Medical Science Press: Beijing,.

  19. Shirahata T, Miyaishi R, Kitazoe T et al (2021) Preparation of tenuifolin from polygala senega L. root using a hydrolytic continuous flow system under high-temperature. High-Pressure Conditions J Org Chem 86:16268–16277. https://doi.org/10.1021/acs.joc.1c01125

    Article  CAS  PubMed  Google Scholar 

  20. Yin L, Zhou J, Chen D et al (2019) A review of the application of near-infrared spectroscopy to rare traditional Chinese medicine. Spectrochim Acta - Part A Mol Biomol Spectrosc 221:117208. https://doi.org/10.1016/j.saa.2019.117208

    Article  CAS  Google Scholar 

  21. Beć KB, Grabska J, Czarnecki MA (2018) Spectra-structure correlations in NIR region: spectroscopic and anharmonic DFT study of n-hexanol, cyclohexanol and phenol. Spectrochim Acta Part A Mol Biomol Spectrosc 197:176–184. https://doi.org/10.1016/j.saa.2018.01.041

    Article  ADS  CAS  Google Scholar 

  22. Mishra P, Rutledge DN, Roger JM et al (2021) Chemometric pre-processing can negatively affect the performance of near-infrared spectroscopy models for fruit quality prediction. Talanta 229:122303. https://doi.org/10.1016/j.talanta.2021.122303

    Article  CAS  PubMed  Google Scholar 

  23. Engel J, Gerretzen J, Szymańska E, et al. (2013) Breaking with trends in pre-processing? TrAC–Trends Anal Chem 50: 96–106. https://doi.org/10.1016/j.trac.2013.04.015

  24. Sarraguça MC, Ribeiro PRS, Santos AO et al (2014) A PAT approach for the on-line monitoring of pharmaceutical co-crystals formation with near infrared spectroscopy. Int J Pharm 471:478–484. https://doi.org/10.1016/j.ijpharm.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  25. Shirahata T, Kanazawa A, Uematsu M et al (2022) Near-infrared metabolic profiling for discrimination of apricot and peach kernels. Chem Pharm Bull 70(2):863–867. https://doi.org/10.1248/cpb.c21-01102

    Article  CAS  Google Scholar 

  26. Miao T, Sihota N, Pfeifer F et al (2023) Rapid determination of the total petroleum hydrocarbon content of soils by handheld fourier transform near-infrared spectroscopy. Anal Chem. https://doi.org/10.1021/acs.analchem.3c00021

    Article  PubMed  Google Scholar 

  27. Porep JU, Kammerer DR, Carle R (2015) On-line application of near infrared (NIR) spectroscopy in food production. Trends Food Sci Technol 46:211–230. https://doi.org/10.1016/j.tifs.2015.10.002

    Article  CAS  Google Scholar 

  28. Rodionova OY, Titova AV, Demkin NA et al (2019) Qualitative and quantitative analysis of counterfeit fluconazole capsules: a non-invasive approach using NIR spectroscopy and chemometrics. Talanta 195:662–667. https://doi.org/10.1016/j.talanta.2018.11.088

    Article  CAS  PubMed  Google Scholar 

  29. Lan Z, Zhang Y, Sun Y et al (2021) Rapid quantitative detection of the discrepant compounds in differently processed Curcumae Rhizoma products by FT-NIR combined with VCPA-GA technology. J Pharm Biomed Anal 195:113837. https://doi.org/10.1016/j.jpba.2020.113837

    Article  CAS  PubMed  Google Scholar 

  30. Li T, Su C (2018) Authenticity identification and classification of Rhodiola species in traditional Tibetan medicine based on Fourier transform near-infrared spectroscopy and chemometrics analysis. Spectrochim Acta - Part A Mol Biomol Spectrosc 204:131–140. https://doi.org/10.1016/j.saa.2018.06.004

    Article  ADS  CAS  Google Scholar 

  31. Fan L, Huang Y, Zhao R et al (2019) Geographical-origin discrimination and volatile oil quantitative analysis of: Zanthoxylum bungeanum Maxim. with a portable near-infrared spectrometer. Anal Methods 11:5301–5310. https://doi.org/10.1039/c9ay01520e

    Article  CAS  Google Scholar 

  32. Zhu Y, Chen X, Wang S et al (2018) Simultaneous measurement of contents of liquirtin and glycyrrhizic acid in liquorice based on near infrared spectroscopy. Spectrochim Acta - Part A Mol Biomol Spectrosc 196:209–214. https://doi.org/10.1016/j.saa.2018.02.021

    Article  ADS  CAS  Google Scholar 

  33. Li Y, Shen Y, Liang YC, Guo D (2020) Quality assessment of herbal medicines based on chemical fingerprints combined with chemometrics approach: a review. J Pharm Biomed Anal 185:113215. https://doi.org/10.1016/j.jpba.2020.113215

    Article  CAS  PubMed  Google Scholar 

  34. Shirahata T, Ishikawa H, Kudo T et al (2021) Metabolic fingerprinting for discrimination of DNA-authenticated Atractylodes plants using 1H NMR spectroscopy. J Nat Med 75:475–488. https://doi.org/10.1007/s11418-020-01471-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kajino A, Bai W, Yoshimura N, Takayanagi M (2020) Identification of peach and apricot kernels for traditional chinese medicines using near-infrared spectroscopy. Vib Spectrosc 2021(113):103202. https://doi.org/10.1016/j.vibspec.2020.103202

    Article  CAS  Google Scholar 

  36. Jiang H, Yoon SC, Zhuang H, Wang W, Li Y, Yang Y (2019) Integration of spectral and textural features of visible and near-infrared hyperspectral imaging for differentiating between normal and white striping broiler breast meat. Spectrochim Acta - Part A Mol Biomol Spectrosc 213:118–126. https://doi.org/10.1016/j.saa.2019.01.052

    Article  ADS  CAS  Google Scholar 

  37. Liang MH, Wen WJ, Jun CY et al (2017) Rapid authentication of starch adulterations in ultrafine granular powder of Shanyao by near-infrared spectroscopy coupled with chemometric methods. Food Chem 215:108–115. https://doi.org/10.1016/j.foodchem.2016.07.156

    Article  CAS  Google Scholar 

  38. Westerhuis JA, van Velzen EJJ, Hoefsloot HCJ, Smilde AK (2010) Multivariate paired data analysis: multilevel PLSDA versus OPLSDA. Metabolomics 6:119–128. https://doi.org/10.1007/s11306-009-0185-z

    Article  CAS  PubMed  Google Scholar 

  39. Wiklund, S. Multivariate Data Analysis for Omics; Umetrics: Umeå, Sweden, 2008.

  40. Zhang XJ, Qiu JF, Guo LP et al (2013) Discrimination of multi-origin Chinese herbal medicines using gas chromatography-mass spectrometry-based fatty acid profiling. Molecules 18:15329–15343. https://doi.org/10.3390/molecules181215329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Chang L, Zhao X et al (2012) Gas chromatography-mass spectrometry analysis on compounds in volatile oils extracted from Yuan Zhi (Radix Polygalae) and Shi Chang Pu (Acorus Tatarinowii) by supercritical CO2. J Tradit Chinese Med 32:459–464. https://doi.org/10.1016/s0254-6272(13)60055-2

    Article  Google Scholar 

  42. Eriksson L, (2001) Multi- and Megavariate Data Analysis Principles and Applications, Umetrics Academy, Umeå, Sweden.

  43. Zhu M, Long Y, Chen Y et al (2021) Fast determination of lipid and protein content in green coffee beans from different origins using NIR spectroscopy and chemometrics. J Food Compos Anal 102:104055. https://doi.org/10.1016/j.jfca.2021.104055

    Article  CAS  Google Scholar 

  44. Quan-Jun Y, Jian-Ping Z, Jian-Hua Z et al (2017) Distinct Metabolic profile of inhaled budesonide and salbutamol in asthmatic children during acute exacerbation. Basic Clin Pharmacol Toxicol 120:303–311. https://doi.org/10.1111/bcpt.12686

    Article  CAS  PubMed  Google Scholar 

  45. Souihi N, Dumarey M, Wikström H et al (2013) A quality by design approach to investigate the effect of mannitol and dicalcium phosphate qualities on roll compaction. Int J Pharm 447:47–61. https://doi.org/10.1016/j.ijpharm.2013.02.036

    Article  CAS  PubMed  Google Scholar 

  46. Alexander DLJ, Tropsha A, Winkler DA (2015) Beware of R2: simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J Chem Inf Model 55:1316–1322. https://doi.org/10.1021/acs.jcim.5b00206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ikram MMM, Ridwani S, Putri SP, Fukusaki E (2020) GC-MS based metabolite profiling to monitor ripening-specific metabolites in pineapple (Ananas comosus). Metabolites 10:1–15. https://doi.org/10.3390/metabo10040134

    Article  CAS  Google Scholar 

  48. Wu L, Su Y, Yu H et al (2018) Rapid determination of saponins in the honey-fried processing of rhizoma cimicifugae by near infrared diffuse reflectance spectroscopy. Molecules 23:1–12. https://doi.org/10.3390/molecules23071617

    Article  CAS  Google Scholar 

  49. Luo G, Xu B, Shi X et al (2015) Rapid characterization of tanshinone extract powder by near infrared spectroscopy. Int J Anal Chem 2015:704940. https://doi.org/10.1155/2015/704940

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yan H, Li PH, Zhou GS et al (2021) Rapid and practical qualitative and quantitative evaluation of non-fumigated ginger and sulfur-fumigated ginger via Fourier-transform infrared spectroscopy and chemometric methods. Food Chem 341:128241. https://doi.org/10.1016/j.foodchem.2020.128241

    Article  CAS  PubMed  Google Scholar 

  51. Marco S (2014) The need for external validation in machine olfaction: Emphasis on health-related applications Chemosensors and Chemoreception. Anal Bioanal Chem 406:3941–3956. https://doi.org/10.1007/s00216-014-7807-7

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Cawley GC, Talbot NLC (2003) Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers. Pattern Recognit 36:2585–2592. https://doi.org/10.1016/S0031-3203(03)00136-5

    Article  ADS  Google Scholar 

  53. Yoshitomi T, Oshima N, Goto Y et al (2017) Construction of Prediction models for the transient receptor potential vanilloid subtype 1 (TRPV1)-stimulating activity of ginger and processed ginger based on LC-HRMS data and pls regression analyses. J Agric Food Chem 65:3581–3588. https://doi.org/10.1021/acs.jafc.7b00577

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by The Japan Science and Technology Agency’s Center of Innovation Program (JST COI, Grant number JPMJCE1301), and AMED (Grant No. JP18ak0101104).

Author information

Authors and Affiliations

Authors

Contributions

YK, KY, and NK initiated and directed the project. YK and TS designed the study conception. TM, HF, and YK collected and stored plant samples. NK and KY provided seeds of PS stored in NIB to EK, who cultivated PS in Kitasato University to provide samples No.31-42. TS and TK designed the experiments, and TK and UC conducted the experiments, analyzed, and interpreted the results. TS, TK, and YK wrote the manuscript. All authors have read and approved the final version of the article.

Corresponding author

Correspondence to Yoshinori Kobayashi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitazoe, T., Usui, C., Kodaira, E. et al. Improved quantitative analysis of tenuifolin using hydrolytic continuous-flow system to build prediction models for its content based on near-infrared spectroscopy. J Nat Med 78, 296–311 (2024). https://doi.org/10.1007/s11418-023-01764-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01764-0

Keywords

Navigation