Skip to main content
Log in

Bioavailability of Orally Administered Drugs After Bariatric Surgery

  • REVIEW
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Oral drug absorption after bariatric surgery is likely to be altered, but the impact of different bariatric surgery procedures on individual drugs is not uniform. The aim of this article is to describe factors influencing the bioavailability of orally administered drugs after bariatric surgery and to provide readers with practical recommendations for drug dosing. We also discuss the medications that may be harmful after bariatric surgery.

Recent Findings

The fundamental factors for enteral drug absorption are the production of gastric acid; the preserved length of the intestine, i.e., the size of the absorption surface and/or the preserved enterohepatic circulation; and the length of common loop where food and drugs are mixed with digestive enzymes and bile acids. Bypassing of metabolizing enzymes or efflux pumps and changes in intestinal motility can also play an important role. Significant changes of drug absorption early after the anatomic alteration may also be gradually ameliorated due to gradual intestinal adaptation. The most affected drugs are those with low or variable bioavailability and those undergoing enterohepatic circulation. Attention should also be paid to oral drug formulations, especially in the early postoperative period, when immediate-release and liquid formulations are preferred.

Summary

The changes in oral bioavailability are especially clinically meaningful in patients treated with drugs possessing narrow therapeutic index (e.g., oral anticoagulants, levothyroxine, and anticonvulsants) or in acute conditions (e.g., anti-infectives); nevertheless, it may also influence the therapeutic value of chronic therapy (e.g., antidepressants. antihypertensives, antiplatelets, statins, PPIs, contraceptives, and analgesics); therapeutic effect of chronic therapy is further influenced by pharmacokinetic alterations resulting from weight loss. Therapeutic drug monitoring, periodical clinical evaluation, and adequate dose adjustments are necessary. Due to safety reasons, patients should avoid oral bisphosphonates, regular use of non-steroidal anti-inflammatory drugs, and, if possible, corticosteroids after bariatric surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

ASA:

Acetylsalicylic acid

BMI:

Body mass index

BAV:

Bioavailability

BCS:

Biopharmaceutical classification system

BS:

Bariatric surgery

CL :

Clearance

C max :

Peak concentration

DOAC:

Direct oral anticoagulant

GIP:

Gastric inhibitory polypeptide

GIT:

Gastrointestinal tract

INR:

International normalized ratio

IR:

Immediate release

IUDs:

Intrauterine devices

H2 :

Histamine H2 receptor

k a :

Absorption rate constant

NSAIDs:

Non-steroidal anti-inflammatory drugs

OAGB:

Mini-gastric bypass

PPI:

Proton pump inhibitor

RYGB:

Roux-en-Y gastric bypass

SG:

Sleeve gastrectomy

T 1/2 :

Biological half-life

TDM:

Therapeutic drug monitoring

T max :

Time to peak concentration

TSH:

Thyroid-stimulating hormone

Vd:

Volume of distribution

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Miedziaszczyk M, Ciabach P, Szałek E. The effects of bariatric surgery and gastrectomy on the absorption of drugs, vitamins, and mineral elements. Pharmaceutics. 2021;13:2111.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Porat D, Dahan A. Active intestinal drug absorption and the solubility-permeability interplay. Int J Pharm. 2018;537:84–93.

    CAS  PubMed  Google Scholar 

  3. •• Kingma JS, Burgers DMT, Monpellier VM, Wiezer MJ, Blussé van Oud‐Alblas HJ, Vaughns JD, et al. Oral drug dosing following bariatric surgery: general concepts and specific dosing advice. Br J Clin Pharmacol. 2021;87:4560–76. List of important aspects influencing drug absorption after bariatric surgery.

  4. Bettini S, Belligoli A, Fabris R, Busetto L. Diet approach before and after bariatric surgery. Rev Endocr Metab Disord. 2020;21:297–306.

    PubMed  PubMed Central  Google Scholar 

  5. Santamaría MM, Villafranca JJA, Abilés J, López AF, Rodas LV, Goitia BT, et al. Systematic review of drug bioavailability following gastrointestinal surgery. Eur J Clin Pharmacol. 2018;74:1531–45.

    PubMed  Google Scholar 

  6. Kwon Y. Handbook of essential pharmacokinetics, pharmacodynamics, and drug metabolism for industrial scientists. New York: Kluwer Academic/Plenum Publishers; 2001.

    Google Scholar 

  7. Montana L, Colas P-A, Valverde A, Carandina S. Alterations of digestive motility after bariatric surgery. J Visc Surg. 2022;159:S28-34.

    CAS  PubMed  Google Scholar 

  8. •• Lorico S, Colton B. Medication management and pharmacokinetic changes after bariatric surgery. Can Fam Physician Med Fam Can. 2020;66:409–16. Absorption of drugs with low and variable BAV or enterohepatic circulation is most affected. SG influences drug absorption less than gastric bypass.

  9. Darwich AS, Henderson K, Burgin A, Ward N, Whittam J, Ammori BJ, et al. Trends in oral drug bioavailability following bariatric surgery: examining the variable extent of impact on exposure of different drug classes: trends in oral drug bioavailability following bariatric surgery. Br J Clin Pharmacol. 2012;74:774–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. • Yska JP, Wanders JTM, Odigie B, Apers JA, Emous M, Totté ERE, et al. Effect of Roux-en-Y gastric bypass on the bioavailability of metoprolol from immediate and controlled release tablets: a single oral dose study before and after surgery. Eur J Hosp Pharm. 2020;27:e19–24. Example of decreased absorption from extended-release tablets.

  11. Hua S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Front Pharmacol. 2020;11:524.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Padwal R, Brocks D, Sharma AM. A systematic review of drug absorption following bariatric surgery and its theoretical implications. Obes Rev. 2010;11:41–50.

    CAS  PubMed  Google Scholar 

  13. Wu C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22:11–23.

    CAS  PubMed  Google Scholar 

  14. Stenberg E, dos Reis Falcão LF, O’Kane M, Liem R, Pournaras DJ, Salminen P, et al. Guidelines for perioperative care in bariatric surgery: Enhanced Recovery After Surgery (ERAS) Society recommendations: a 2021 update. World J Surg. 2022;46:729–51.

    PubMed  PubMed Central  Google Scholar 

  15. • Porat D, Vaynshtein J, Gibori R, Avramoff O, Shaked G, Dukhno O, et al. Stomach pH before vs. after different bariatric surgery procedures: clinical implications for drug delivery. Eur J Pharm Biopharm. 2021;160:152–7. So far the only study investigating stomach pH after BS, even though with some limitations.

  16. Sista F, Abruzzese V, Clementi M, Carandina S, Cecilia M, Amicucci G. The effect of sleeve gastrectomy on GLP-1 secretion and gastric emptying: a prospective study. Surg Obes Relat Dis Off J Am Soc Bariatr Surg. 2017;13:7–14.

    Google Scholar 

  17. Sioka E, Tzovaras G, Perivoliotis K, Bakalis V, Zachari E, Magouliotis D, et al. Impact of laparoscopic sleeve gastrectomy on gastrointestinal motility. Gastroenterol Res Pract. 2018;2018:1–17.

    Google Scholar 

  18. Pellegrini CA, Deveney CW, Patti MG, Lewin M, Way LW. Intestinal transit of food after total gastrectomy and Roux-Y esophagojejunostomy. Am J Surg. 1986;151:117–25.

    CAS  PubMed  Google Scholar 

  19. Dirksen C, Damgaard M, Bojsen-Møller KN, Jørgensen NB, Kielgast U, Jacobsen SH, et al. Fast pouch emptying, delayed small intestinal transit, and exaggerated gut hormone responses after Roux-en-Y gastric bypass. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc. 2013;25:346-e255.

    CAS  Google Scholar 

  20. Rogers CC, Alloway RR, Alexander JW, Cardi M, Trofe J, Vinks AA. Pharmacokinetics of mycophenolic acid, tacrolimus and sirolimus after gastric bypass surgery in end-stage renal disease and transplant patients: a pilot study: pharmacokinetics of immunosuppressants in gastric bypass patients. Clin Transplant. 2007;22:281–91.

    Google Scholar 

  21. Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res. 2009;26:2039–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Benet LZ. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet. 2001;40:159–68.

    CAS  PubMed  Google Scholar 

  23. Mouly S, Paine MF. P-Glycoprotein increases from proximal to distal regions of human small intestine. Pharm Res. 2003;20:1595–9.

    CAS  PubMed  Google Scholar 

  24. Porat D, Dahan A. Medication management after bariatric surgery: providing optimal patient care. J Clin Med. 2020;9:1511.

    PubMed  PubMed Central  Google Scholar 

  25. Hakeam HA, Al-Sanea N. Effect of major gastrointestinal tract surgery on the absorption and efficacy of direct acting oral anticoagulants (DOACs). J Thromb Thrombolysis. 2017;43:343–51.

    CAS  PubMed  Google Scholar 

  26. Skottheim IB, Jakobsen GS, Stormark K, Christensen H, Hjelmesæth J, Jenssen T, et al. Significant increase in systemic exposure of atorvastatin after biliopancreatic diversion with duodenal switch. Clin Pharmacol Ther. 2010;87:699–705.

    CAS  PubMed  Google Scholar 

  27. Skottheim IB, Stormark K, Christensen H, Jakobsen GS, Hjelmesæth J, Jenssen T, et al. Significantly altered systemic exposure to atorvastatin acid following gastric bypass surgery in morbidly obese patients. Clin Pharmacol Ther. 2009;86:311–8.

    CAS  PubMed  Google Scholar 

  28. Ziegler O, Sirveaux MA, Brunaud L, Reibel N, Quilliot D. Medical follow up after bariatric surgery: nutritional and drug issues general recommendations for the prevention and treatment of nutritional deficiencies. Diabetes Metab. 2009;35:544–57.

    CAS  PubMed  Google Scholar 

  29. Jakobsen GS, Skottheim IB, Sandbu R, Christensen H, Røislien J, Åsberg A, et al. Long-term effects of gastric bypass and duodenal switch on systemic exposure of atorvastatin. Surg Endosc. 2013;27:2094–101.

    PubMed  Google Scholar 

  30. Eriksson BI, Quinlan DJ, Weitz JI. Comparative pharmacodynamics and pharmacokinetics of oral direct thrombin and factor Xa inhibitors in development: Clin Pharmacokinet. 2009;48:1–22.

    CAS  PubMed  Google Scholar 

  31. •• Steele KE, Prokopowicz GP, Canner JP, Harris C, Jurao RA, Kickler TS, et al. The APB study: apixaban pharmacokinetics in bariatric patients before to 1 year after vertical sleeve gastrectomy or Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2022;18:594–603. Important information on non-vitamin K anticoagulant. Area where sparse data are available.

  32. Kröll D, Stirnimann G, Vogt A, Lai DLL, Borbély YM, Altmeier J, et al. Pharmacokinetics and pharmacodynamics of single doses of rivaroxaban in obese patients prior to and after bariatric surgery: rivaroxaban in bariatric surgery. Br J Clin Pharmacol. 2017;83:1466–75.

    PubMed  PubMed Central  Google Scholar 

  33. Mani H, Kasper A, Lindhoff-Last E. Measuring the anticoagulant effects of target specific oral anticoagulants—reasons, methods and current limitations. J Thromb Thrombolysis. 2013;36:187–94.

    CAS  PubMed  Google Scholar 

  34. Mahlmann A, Gehrisch S, Beyer-Westendorf J. Pharmacokinetics of rivaroxaban after bariatric surgery: a case report. J Thromb Thrombolysis. 2013;36:533–5.

    PubMed  Google Scholar 

  35. Rottenstreich A, Barkai A, Arad A, Raccah BH, Kalish Y. The effect of bariatric surgery on direct-acting oral anticoagulant drug levels. Thromb Res. 2018;163:190–5.

    CAS  PubMed  Google Scholar 

  36. Parasrampuria DA, Kanamaru T, Connor A, Wilding I, Ogata K, Shimoto Y, et al. Evaluation of regional gastrointestinal absorption of edoxaban using the enterion capsule. J Clin Pharmacol. 2015;55:1286–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Martin KA, Lee CR, Farrell TM, Moll S. Oral anticoagulant use after bariatric surgery: a literature review and clinical guidance. Am J Med. 2017;130:517–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stangier J. Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin??Inhibitor Dabigatran Etexilate: Clin Pharmacokinet. 2008;47:285–95.

  39. Steffel J, Collins R, Antz M, Cornu P, Desteghe L, Haeusler KG, et al. 2021 European Heart Rhythm Association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. EP Eur. 2021;23:1612–76.

    Google Scholar 

  40. Lee D, DeFilipp Z, Judson K, Kennedy M. Subtherapeutic anticoagulation with dabigatran following Roux-en-Y gastric bypass surgery. J Cardiol Cases. 2013;8:e49-50.

    PubMed  PubMed Central  Google Scholar 

  41. •• Grainger B, Holloway R, Merriman E, Booth M, Royle G, Babor R, et al. Evidence of impaired dabigatran absorption following laparoscopic Roux‐en‐Y gastric bypass surgery: the Auckland regional experience (2011–2018). Br J Haematol [Internet]. 2020 [cited 2023 Mar 3];191. https://doi.org/10.1111/bjh.17004. Clinically important warning.

  42. Douros A, Schlemm L, Bolbrinker J, Ebinger M, Kreutz R. Insufficient anticoagulation with dabigatran in a patient with short bowel syndrome. Thromb Haemost. 2014;112:419–20.

    CAS  PubMed  Google Scholar 

  43. Steffen KJ, Wonderlich JA, Erickson AL, Strawsell H, Mitchell JE, Crosby RD. Comparison of warfarin dosages and international normalized ratios before and after Roux-en-Y gastric bypass surgery. Pharmacother J Hum Pharmacol Drug Ther. 2015;35:876–80.

    CAS  Google Scholar 

  44. Bechtel P, Boorse R, Rovito P, Harrison TD, Hong J. Warfarin users prone to coagulopathy in first 30 days after hospital discharge from gastric bypass. Obes Surg. 2013;23:1515–9.

    PubMed  Google Scholar 

  45. Irwin AN, McCool KH, Delate T, Witt DM. Assessment of warfarin dosing requirements after bariatric surgery in patients requiring long-term warfarin therapy. Pharmacother J Hum Pharmacol Drug Ther. 2013;33:1175–83.

    CAS  Google Scholar 

  46. Schullo-Feulner AM, Stoecker Z, Brown GA, Schneider J, Jones TA, Burnett B. Warfarin dosing after bariatric surgery: a retrospective study of 10 patients previously stable on chronic warfarin therapy: effect of bariatric surgery on warfarin dosing. Clin Obes. 2014;4:108–15.

    CAS  PubMed  Google Scholar 

  47. Chan L-N. Warfarin dosing changes after bariatric surgery: implications on the mechanism for altered dose requirements and safety concerns-an alternative viewpoint. Pharmacother J Hum Pharmacol Drug Ther. 2014;34:e26–9.

    CAS  Google Scholar 

  48. •• Azran C, Hanhan-Shamshoum N, Irshied T, Ben-Shushan T, Dicker D, Dahan A, et al. Hypothyroidism and levothyroxine therapy following bariatric surgery: a systematic review, meta-analysis, network meta-analysis, and meta-regression. Surg Obes Relat Dis Off J Am Soc Bariatr Surg. 2021;17:1206–17. Important differences between various bariatric procedures.

  49. Pabla D, Akhlaghi F, Zia H. A comparative pH-dissolution profile study of selected commercial levothyroxine products using inductively coupled plasma mass spectrometry. Eur J Pharm Biopharm. 2009;72:105–10.

    CAS  PubMed  Google Scholar 

  50. Hamad GG, Helsel JC, Perel JM, Kozak GM, McShea MC, Hughes C, et al. The effect of gastric bypass on the pharmacokinetics of serotonin reuptake inhibitors. Am J Psychiatry. 2012;169:256–63.

    PubMed  PubMed Central  Google Scholar 

  51. Vandenberghe F, Gilet P, Daali Y, Favre L, Eap CB. Bioavailability of vortioxetine after a Roux-en-Y gastric bypass. Obes Surg. 2021;31:1353–6.

    PubMed  Google Scholar 

  52. Krieger CA, Cunningham JL, Reid JM, Langman LJ, Grothe KB, Clark MM, et al. Comparison of bioavailability of single-dose extended-release venlafaxine capsules in obese patients before and after gastric bypass surgery. Pharmacother J Hum Pharmacol Drug Ther. 2017;37:1374–82.

    CAS  Google Scholar 

  53. Bordeaux BC, Qayyum R, Yanek LR, Vaidya D, Becker LC, Faraday N, et al. Effect of obesity on platelet reactivity and response to low-dose aspirin. Prev Cardiol. 2010;13:56–62.

    CAS  PubMed  Google Scholar 

  54. Mitrov-Winkelmolen L, van Buul-Gast M-CW, Swank DJ, Overdiek HWPM, van Schaik RHN, Touw DJ. The effect of Roux-en-Y gastric bypass surgery in morbidly obese patients on pharmacokinetics of (acetyl)salicylic acid and omeprazole: the ERY-PAO Study. Obes Surg. 2016;26:2051–8.

  55. Goday Arno A, Farré M, Rodríguez-Morató J, Ramon JM, Pérez-Mañá C, Papaseit E, et al. Pharmacokinetics in morbid obesity: influence of two bariatric surgery techniques on paracetamol and caffeine metabolism. Obes Surg [Internet]. 2017 [cited 2022 Dec 14]. https://doi.org/10.1007/s11695-017-2745-z

  56. Oderda GM, Senagore AJ, Morland K, Iqbal SU, Kugel M, Liu S, et al. Opioid-related respiratory and gastrointestinal adverse events in patients with acute postoperative pain: prevalence, predictors, and burden. J Pain Palliat Care Pharmacother. 2019;33:82–97.

    PubMed  Google Scholar 

  57. Lloret-Linares C, Hirt D, Bardin C, Bouillot J-L, Oppert J-M, Poitou C, et al. Effect of a Roux-en-Y gastric bypass on the pharmacokinetics of oral morphine using a population approach. Clin Pharmacokinet. 2014;53:919–30.

    CAS  PubMed  Google Scholar 

  58. Heinberg LJ, Pudalov L, Alameddin H, Steffen K. Opioids and bariatric surgery: a review and suggested recommendations for assessment and risk reduction. Surg Obes Relat Dis. 2019;15:314–21.

    PubMed  Google Scholar 

  59. • Tajeu GS, Johnson E, Buccilla M, Gadegbeku CA, Janick S, Rubin D, et al. Changes in antihypertensive medication following bariatric surgery. Obes Surg. 2022;32:1312–24. Important aspect of reducing pharmacotherapy due to improvement of health status after bariatric surgery.

  60. Tandra S, Chalasani N, Jones DR, Mattar S, Hall SD, Vuppalanchi R. Pharmacokinetic and pharmacodynamic alterations in the Roux-en-Y gastric bypass recipients. Ann Surg. 2013;258:262–9.

    PubMed  Google Scholar 

  61. Brown CS, Rabinstein AA, Nystrom EM, Britton JW, Singh TD. Antiseizure medication use in gastric bypass patients and other post-surgical malabsorptive states. Epilepsy Behav Rep. 2021;16:100439.

    PubMed  PubMed Central  Google Scholar 

  62. Porat D, Margolin N, Lavon O, Dahan A. Carbamazepine therapy after bariatric surgery: eight sleeve gastrectomy cases and review of the literature. Obes Surg. 2022;32:3481–6.

    PubMed  Google Scholar 

  63. Riker RR, Gagnon DJ, Hatton C, May T, Seder DB, Stokem K, et al. Valproate protein binding is highly variable in ICU patients and not predicted by total serum concentrations: a case series and literature review. Pharmacother J Hum Pharmacol Drug Ther. 2017;37:500–8.

    CAS  Google Scholar 

  64. Schlatter J. Oral contraceptives after bariatric surgery. Obes Facts. 2017;10:118–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gerrits EG, Ceulemans R, van Hee R, Hendrickx L, Totté E. Contraceptive treatment after biliopancreatic diversion needs consensus. Obes Surg. 2003;13:378–82.

    PubMed  Google Scholar 

  66. Ogunwole SM, Chen X, Mitta S, Minhas A, Sharma G, Zakaria S, et al. Interconception care for primary care providers: consensus recommendations on preconception and postpartum management of reproductive-age patients with medical comorbidities. Mayo Clin Proc Innov Qual Outcomes. 2021;5:872–90.

    PubMed  PubMed Central  Google Scholar 

  67. Ginstman C, Kopp Kallner H, Fagerberg-Silwer J, Carlsson B, Ärlemalm A, Böttiger Y, et al. Pharmacokinetics of oral levonorgestrel in women after Roux-en-Y gastric bypass surgery and in BMI-matched controls. Obes Surg. 2020;30:2217–24.

    PubMed  PubMed Central  Google Scholar 

  68. Montanha MC, Santos Magon TF, Souza Alcantara C, Simões CF, Silva SRB, Kuroda CM, et al. Reduced bioavailability of oral amoxicillin tablets compared to suspensions in Roux-en-Y gastric bypass bariatric subjects. Br J Clin Pharmacol. 2019;85:2118–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rocha MBS, De Nucci G, Lemos FN, de Albuquerque Lima Babadopulos RF, Rohleder AVP, Fechine FV, et al. Impact of bariatric surgery on the pharmacokinetics parameters of amoxicillin. Obes Surg. 2019;29:917–27.

  70. Magee SR, Shih G, Hume A. Malabsorption of oral antibiotics in pregnancy after gastric bypass surgery. J Am Board Fam Med. 2007;20:310–3.

    PubMed  Google Scholar 

  71. Rivas AB, Lopez-Picado A, Salas-Butrón M del R, Terleira A, Sanchez Pernaute A, Torres Garcia AJ, et al. Effect of Roux-en-Y gastric surgery on ciprofloxacin pharmacokinetics: an obvious effect? Eur J Clin Pharmacol. 2019;75:647–54.

  72. Padwal RS, Ben-Eltriki M, Wang X, Langkaas L-A, Sharma AM, Birch DW, et al. Effect of gastric bypass surgery on azithromycin oral bioavailability. J Antimicrob Chemother. 2012;67:2203–6.

    CAS  PubMed  Google Scholar 

  73. Anvari S, Lee Y, Lam M, Doumouras AG, Hong D. The effect of bariatric surgery on oral antibiotic absorption: a systematic review. Obes Surg. 2020;30:2883–92.

    PubMed  Google Scholar 

  74. Mechanick JI, Apovian C, Brethauer S, Garvey WT, Joffe AM, Kim J, et al. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures – 2019 update: cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society For Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Endocr Pract. 2019;25:1–75.

    Google Scholar 

  75. Abou Zeid H, Kallab R, Najm MA, Jabbour H, Noun R, Sleilati F, et al. Safety and efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) used for analgesia after bariatric surgery: a retrospective case-control study. Obes Surg. 2019;29:911–6.

    PubMed  Google Scholar 

  76. Wu Chao Ying V, H. Kim SH, J. Khan K, Farrokhyar F, D’Souza J, Gmora S, et al. Prophylactic PPI help reduce marginal ulcers after gastric bypass surgery: a systematic review and meta-analysis of cohort studies. Surg Endosc. 2015;29:1018–23.

  77. Yska JP, Gertsen S, Flapper G, Emous M, Wilffert B, van Roon EN. NSAID use after bariatric surgery: a randomized controlled intervention study. Obes Surg. 2016;26:2880–5.

    PubMed  Google Scholar 

  78. King AB, Spann MD, Jablonski P, Wanderer JP, Sandberg WS, McEvoy MD. An enhanced recovery program for bariatric surgical patients significantly reduces perioperative opioid consumption and postoperative nausea. Surg Obes Relat Dis. 2018;14:849–56.

    PubMed  Google Scholar 

  79. Kaplan JA, Schecter SC, Rogers SJ, Lin MYC, Posselt AM, Carter JT. Expanded indications for bariatric surgery: should patients on chronic steroids be offered bariatric procedures? Surg Obes Relat Dis. 2017;13:35–40.

    PubMed  Google Scholar 

  80. Azran C, Porat D, Fine-Shamir N, Hanhan N, Dahan A. Oral levothyroxine therapy postbariatric surgery: Biopharmaceutical aspects and clinical effects. Surg Obes Relat Dis. 2019;15:333–41.

    PubMed  Google Scholar 

Download references

Acknowledgements

The article was written in the framework of the Working Group on Pharmacotherapy in Obesity of the Czech Professional Society of Clinical Pharmacy (member of the Czech Medical Association of J.E. Purkyně, www.coskf.cz).

Funding

This study was supported by research initiatives of the Ministry of Health of Czech Republic RVO-VFN 64165 and Ministry of Education, Czech Republic grant COOPERATIO 207034 Internal Disciplines and Pharmaceutical sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Miroslav Hartinger.

Ethics declarations

Conflict of Interest

The authors declare that they do not have any conflict of interest regarding published work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvořáčková, E., Pilková, A., Matoulek, M. et al. Bioavailability of Orally Administered Drugs After Bariatric Surgery. Curr Obes Rep 13, 141–153 (2024). https://doi.org/10.1007/s13679-023-00548-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-023-00548-7

Keywords

Navigation