Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter January 4, 2024

Numerical Approximation of Gaussian Random Fields on Closed Surfaces

  • Andrea Bonito EMAIL logo , Diane Guignard and Wenyu Lei ORCID logo

Abstract

We consider the numerical approximation of Gaussian random fields on closed surfaces defined as the solution to a fractional stochastic partial differential equation (SPDE) with additive white noise. The SPDE involves two parameters controlling the smoothness and the correlation length of the Gaussian random field. The proposed numerical method relies on the Balakrishnan integral representation of the solution and does not require the approximation of eigenpairs. Rather, it consists of a sinc quadrature coupled with a standard surface finite element method. We provide a complete error analysis of the method and illustrate its performances in several numerical experiments.

Award Identifier / Grant number: DMS-2110811

Award Identifier / Grant number: RGPIN-2021-04311

Award Identifier / Grant number: 12301496

Funding statement: Andrea Bonito is partially supported by the NSF Grant DMS-2110811. Diane Guignard acknowledges the support provided by the Natural Science and Engineering Research Council (NSERC, grant RGPIN-2021-04311). Wenyu Lei is partially supported by the National Natural Science Foundation of China (Grant No. 12301496).

A Proof of Lemma 4.4

We follow the argument from [18, Section 4]. Note that from the definition of 𝒬 k - s , we have

P 𝒬 k - s ( L ~ 𝒯 ) W ~ Ψ - 𝒬 k - s ( L 𝒯 ) ( σ P W ~ Ψ ) = k sin ( π s ) π l = - 𝙼 𝙽 e ( 1 - s ) y l l W ~ Ψ ,

where l : 𝕍 ~ ( 𝒯 ) 𝕍 ( 𝒯 ) is given by

(A.1) l := P ( μ l I + L ~ 𝒯 ) - 1 - ( μ l I + L 𝒯 ) - 1 ( σ P )

with μ l := e y l and y l are the sinc quadrature points; see (4.20). The decomposition of the operator l

l = ( μ l I + L 𝒯 ) - 1 [ ( μ l I + L 𝒯 ) P - σ P ( μ l I + L ~ 𝒯 ) ] ( μ l I + L ~ 𝒯 ) - 1
= L 𝒯 ( μ l I + L 𝒯 ) - 1 ( P T ~ 𝒯 - T 𝒯 σ P ) L ~ 𝒯 ( μ l I + L ~ 𝒯 ) - 1 μ l ( μ l I + L 𝒯 ) - 1 ( 1 - σ ) P ( μ l I + L ~ 𝒯 ) - 1
= : l 1 + l 2 .

is instrumental in the error analysis below.

The next result recall estimate for some terms in the above decomposition. We refer to [18, Lemma 4.5] for more details.

Lemma A.1.

Let p [ - 1 , 1 ] and q R be such that p + q [ 0 , 2 ] . Then for any μ > 0 and any F ~ V ~ ( T ) there holds

(A.2) L ~ 𝒯 ( μ I + L ~ 𝒯 ) - 1 F ~ H - p ( γ ) μ - p + q 2 L ~ 𝒯 q 2 F ~ L 2 ( γ ) .

Moreover, for any F V ( T ) we have

(A.3) L 𝒯 ( μ I + L 𝒯 ) - 1 F L 2 ( Γ ) μ - 1 2 F H 1 ( Γ )

and

(A.4) ( μ I + L 𝒯 ) - 1 F L 2 ( Γ ) μ - 1 F L 2 ( Γ ) .

We also note that the arguments leading to (3.18) but using expansions based on the discrete eigenpairs imply that if r ( n - 1 2 , 2 s ) and μ > 0 we have

(A.5) ( μ I + L ~ 𝒯 ) - 1 F ~ L 2 ( γ ) L ~ 𝒯 - r 2 F ~ L 2 ( γ ) { 1 when  μ 1 , μ r 2 - 1 when  μ > 1

for any F ~ 𝕍 ~ ( 𝒯 ) .

To prove Lemma 4.4, it suffices to show that

(A.6) S i := k l = - 𝙼 𝙽 μ l 1 - s l i W ~ Ψ L 2 ( Ω ; L 2 ( Γ ) ) C ( h ) h 2 , i = 1 , 2 .

which we do now by estimating each term separately.

We start with S 2 and let r ( n - 1 2 , 2 s ) . Thanks to (A.4), the geometric error (4.5), and (A.5), we obtain

S 2 h 2 L ~ 𝒯 - r 2 W ~ Ψ L 2 ( Ω ; L 2 ( γ ) ) ( μ l 1 k μ l 1 - s + μ l > 1 k μ l - s + r 2 ) ,

The estimate of L ~ 𝒯 - r 2 W ~ Ψ L 2 ( Ω ; L 2 ( γ ) ) provided by Lemma 4.2 in conjunction with - s + r 2 < 0 , yield

S 2 h 2 L ~ 𝒯 - r 2 W ~ Ψ L 2 ( Ω ; L 2 ( γ ) ) h 2 ,

which is the desired estimate in disguised (with C ( h ) 1 ).

For S 1 , we first estimate the discrepancy between U ~ 𝒯 := T ~ 𝒯 F ~ and U 𝒯 := T 𝒯 σ P F ~ for any F ~ 𝕍 ~ ( 𝒯 ) . By definition, see (4.3), U 𝒯 satisfies

A Γ ( U 𝒯 , V ) = Γ σ P F ~ V

for any V 𝕍 ( 𝒯 ) . In turn, the change of variable formula (4.4) together with the definition of U ~ 𝒯 imply

A Γ ( U 𝒯 , V ) = γ F ~ ( P - 1 V ) = a γ ( U ~ 𝒯 , P - 1 V )

upon realizing that P - 1 V 𝕍 ~ ( 𝒯 ) . Consequently, we find that

κ 2 Γ ( P U ~ 𝒯 - U 𝒯 ) V + Γ Γ ( P U ~ 𝒯 - U 𝒯 ) Γ V = A Γ ( P U ~ 𝒯 , V ) - a γ ( U ~ 𝒯 , P - 1 V )
= κ 2 γ ( P - 1 σ - 1 - 1 ) U ~ 𝒯 ( P - 1 V ) + γ γ U ~ 𝒯 𝐄 ~ γ ( P - 1 V ) ,

where the error matrix 𝐄 ~ satisfies 𝐄 ~ L ( γ ) h 2 (see, e.g., [17, Corollary 33]). We now set V = P U ~ 𝒯 - U 𝒯 so that with Cauchy-Schwarz inequality and the geometric consistency (4.5), we get

(A.7) ( P T ~ 𝒯 - T 𝒯 σ P ) F ~ H 1 ( Γ ) = P U ~ 𝒯 - U 𝒯 H 1 ( Γ ) h 2 U ~ 𝒯 H 1 ( γ ) h 2 F ~ H - 1 ( γ ) .

We next estimate l 1 W ~ Ψ L 2 ( Ω ; L 2 ( Γ ) ) distinguishing two cases.

Case 1. If μ l > 1 , we apply successively (A.3), (A.7) and (A.2) (with p = 1 and q = - min { 1 , r } ) to get

l 1 W ~ Ψ L 2 ( Ω ; L 2 ( Γ ) ) μ l min { - 1 2 , r 2 - 1 } h 2 L ~ 𝒯 q 2 W ~ Ψ L 2 ( Ω ; L 2 ( γ ) )
μ l r 2 - 1 h 2 L ~ 𝒯 q 2 W ~ Ψ L 2 ( Ω ; L 2 ( γ ) ) ,

where we used that μ l - 1 2 μ l r 2 - 1 if r > 1 .

Case 2. If 0 < μ l 1 , we set again q = - min { 1 , r } . Using to the relation L 𝒯 ( μ l I + L 𝒯 ) - 1 = I - μ l ( μ l I + L 𝒯 ) - 1 and (A.4), we have

L 𝒯 ( μ l I + L 𝒯 ) - 1 F L 2 ( Γ ) F L 2 ( Γ ) + μ l ( μ l I + L ) - 1 F L 2 ( Γ ) F L 2 ( Γ ) .

Moreover, (A.7) implies that

( P T ~ 𝒯 - T 𝒯 σ P ) F ~ H 1 ( Γ ) h 2 F ~ H q ( γ ) ,

while (A.2) with p = - q reads

L ~ 𝒯 ( μ l I + L ~ 𝒯 ) - 1 F ~ H q ( γ ) L ~ 𝒯 q 2 F ~ L 2 ( γ ) .

Gathering the above three estimates yields

l 1 W ~ Ψ L 2 ( Ω ; L 2 ( Γ ) ) h 2 L ~ 𝒯 q 2 W ~ Ψ L 2 ( Ω ; L 2 ( γ ) ) .

and as a consequence

S 1 h 2 L ~ 𝒯 q 2 W ~ Ψ L 2 ( Ω ; L 2 ( γ ) ) ( μ l 1 k μ l 1 - s + μ l > 1 k μ l - s + r 2 ) h 2 L ~ 𝒯 q 2 W ~ Ψ L 2 ( Ω ; L 2 ( γ ) ) .

Recall that q = - min ( 1 , r ) and so we now argue depending on whether r 1 (which can only happen when n = 2 ) and r > 1 . When r 1 , we have q = - r and thus S 1 h 2 by Lemma 4.2. For r > 1 , i.e. q = - 1 , we write r = 1 + ϵ with ϵ ( 0 , 2 s - 1 ) and we invoke an inverse inequality to write

S 1 h 2 - ϵ L ~ 𝒯 - 1 + ϵ 2 W ~ Ψ L 2 ( Ω ; L 2 ( γ ) ) 1 + ϵ 1 + ϵ - n - 1 2 h 2 - ϵ ,

where we applied Lemma 4.2 for the second inequality. To conclude, we choose ϵ = 2 s - 1 ln ( h - 1 ) yielding S 1 h 2 for n = 2 and S 1 ln ( h - 1 ) h 2 for n = 3 . The proof is now complete.

References

[1] R. J. Adler and J. E. Taylor, Random Fields and Geometry, Springer Monogr. Math., Springer, New York, 2007. Search in Google Scholar

[2] H. Antil, J. Pfefferer and S. Rogovs, Fractional operators with inhomogeneous boundary conditions: Analysis, control, and discretization, Commun. Math. Sci. 16 (2018), no. 5, 1395–1426. 10.4310/CMS.2018.v16.n5.a11Search in Google Scholar

[3] D. Arndt, W. Bangerth, M. Feder, M. Fehling, R. Gassmöller, T. Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, S. Sticko, B. Turcksin and D. Wells, The deal.II library, version 9.4, J. Numer. Math. 30 (2022), no. 3, 231–246. 10.1515/jnma-2022-0054Search in Google Scholar

[4] U. Ayachit, The ParaView Guide: A Parallel Visualization Application, Kitware, New York, 2015. Search in Google Scholar

[5] I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal. 45 (2007), no. 3, 1005–1034. 10.1137/050645142Search in Google Scholar

[6] I. Babuška and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam (1991), 641–787. 10.1016/S1570-8659(05)80042-0Search in Google Scholar

[7] I. Babuška, R. Tempone and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal. 42 (2004), no. 2, 800–825. 10.1137/S0036142902418680Search in Google Scholar

[8] M. Bachmayr and A. Djurdjevac, Multilevel representations of isotropic Gaussian random fields on the sphere, IMA J. Numer. Anal. 43 (2023), no. 4, 1970–2000. 10.1093/imanum/drac034Search in Google Scholar

[9] A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math. 10 (1960), 419–437. 10.2140/pjm.1960.10.419Search in Google Scholar

[10] D. Boffi, Finite element approximation of eigenvalue problems, Acta Numer. 19 (2010), 1–120. 10.1017/S0962492910000012Search in Google Scholar

[11] D. Bolin and K. Kirchner, The rational SPDE approach for Gaussian random fields with general smoothness, J. Comput. Graph. Statist. 29 (2020), no. 2, 274–285. 10.1080/10618600.2019.1665537Search in Google Scholar

[12] D. Bolin, K. Kirchner and M. Kovács, Weak convergence of Galerkin approximations for fractional elliptic stochastic PDEs with spatial white noise, BIT 58 (2018), no. 4, 881–906. 10.1007/s10543-018-0719-8Search in Google Scholar

[13] D. Bolin, K. Kirchner and M. Kovács, Numerical solution of fractional elliptic stochastic PDEs with spatial white noise, IMA J. Numer. Anal. 40 (2020), no. 2, 1051–1073. 10.1093/imanum/dry091Search in Google Scholar

[14] D. Bolin, A. B. Simas and J. Wallin, Gaussian Whittle–Matérn fields on metric graphs, preprint (2022), https://arxiv.org/abs/2205.06163. Search in Google Scholar

[15] A. Bonito, J. M. Cascón, K. Mekchay, P. Morin and R. H. Nochetto, High-order AFEM for the Laplace–Beltrami operator: Convergence rates, Found. Comput. Math. 16 (2016), no. 6, 1473–1539. 10.1007/s10208-016-9335-7Search in Google Scholar

[16] A. Bonito, J. M. Cascón, P. Morin and R. H. Nochetto, AFEM for geometric PDE: The Laplace–Beltrami operator, Analysis and Numerics of Partial Differential Equations, Springer INdAM Ser. 4, Springer, Milan (2013), 257–306. 10.1007/978-88-470-2592-9_15Search in Google Scholar

[17] A. Bonito, A. Demlow and R. H. Nochetto, Finite element methods for the Laplace–Beltrami operator, Geometric Partial Differential Equations. Part I, Handb. Numer. Anal. 21, Elsevier, Amsterdam (2020), 1–103. 10.1016/bs.hna.2019.06.002Search in Google Scholar

[18] A. Bonito and W. Lei, Approximation of the spectral fractional powers of the Laplace–Beltrami operator, Numer. Math. Theory Methods Appl. 15 (2022), no. 4, 1193–1218. 10.4208/nmtma.OA-2022-0005sSearch in Google Scholar

[19] A. Bonito, W. Lei and J. E. Pasciak, On sinc quadrature approximations of fractional powers of regularly accretive operators, J. Numer. Math. 27 (2019), no. 2, 57–68. 10.1515/jnma-2017-0116Search in Google Scholar

[20] A. Bonito and J. E. Pasciak, Convergence analysis of variational and non-variational multigrid algorithms for the Laplace–Beltrami operator, Math. Comp. 81 (2012), no. 279, 1263–1288. 10.1090/S0025-5718-2011-02551-2Search in Google Scholar

[21] A. Bonito and J. E. Pasciak, Numerical approximation of fractional powers of elliptic operators, Math. Comp. 84 (2015), no. 295, 2083–2110. 10.1090/S0025-5718-2015-02937-8Search in Google Scholar

[22] A. Bonito and J. E. Pasciak, Numerical approximation of fractional powers of regularly accretive operators, IMA J. Numer. Anal. 37 (2017), no. 3, 1245–1273. 10.1093/imanum/drw067Search in Google Scholar

[23] F. Bonizzoni and F. Nobile, Perturbation analysis for the Darcy problem with log-normal permeability, SIAM/ASA J. Uncertain. Quantif. 2 (2014), no. 1, 223–244. 10.1137/130949415Search in Google Scholar

[24] V. Borovitskiy, A. Terenin, P. Mostowsky and M. P. Deisenroth, Matérn Gaussian processes on Riemannian manifolds, Advances in Neural Information Processing Systems, Volume 33, Curran Associates, New York (2020), 12426–12437. Search in Google Scholar

[25] K. A. Cliffe, M. B. Giles, R. Scheichl and A. L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci. 14 (2011), no. 1, 3–15. 10.1007/s00791-011-0160-xSearch in Google Scholar

[26] S. G. Cox and K. Kirchner, Regularity and convergence analysis in Sobolev and Hölder spaces for generalized Whittle–Matérn fields, Numer. Math. 146 (2020), no. 4, 819–873. 10.1007/s00211-020-01151-xSearch in Google Scholar

[27] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries, 2nd ed., Adv. Des. Control 22, Society for Industrial and Applied Mathematics, Philadelphia, 2011. 10.1137/1.9780898719826Search in Google Scholar

[28] A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal. 47 (2009), no. 2, 805–827. 10.1137/070708135Search in Google Scholar

[29] P. J. Diggle and P. J. Ribeiro, Jr., Model-Based Geostatistics, Springer Ser. Statist., Springer, New York, 2007. 10.1007/978-0-387-48536-2Search in Google Scholar

[30] G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, Partial Differential Equations and Calculus of Variations, Lecture Notes in Math. 1357, Springer, Berlin (1988), 142–155. 10.1007/BFb0082865Search in Google Scholar

[31] G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs, Acta Numer. 22 (2013), 289–396. 10.1017/S0962492913000056Search in Google Scholar

[32] A. Ern and J.-L. Guermond, Finite Elements II, Springer, Berlin, 2021. 10.1007/978-3-030-56923-5Search in Google Scholar

[33] A. Feragen, F. Lauze and S. Hauberg, Geodesic exponential kernels: When curvature and linearity conflict, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press, Piscataway (2015), 3032–3042. 10.1109/CVPR.2015.7298922Search in Google Scholar

[34] P. Frauenfelder, C. Schwab and R. A. Todor, Finite elements for elliptic problems with stochastic coefficients, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 2–5, 205–228. 10.1016/j.cma.2004.04.008Search in Google Scholar

[35] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer, New York, 1991. 10.1007/978-1-4612-3094-6Search in Google Scholar

[36] I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl and I. H. Sloan, Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications, J. Comput. Phys. 230 (2011), no. 10, 3668–3694. 10.1016/j.jcp.2011.01.023Search in Google Scholar

[37] H. Harbrecht, L. Herrmann, K. Kirchner and C. Schwab, Multilevel approximation of Gaussian random fields: Covariance compression, estimation and spatial prediction, preprint (2021), https://arxiv.org/abs/2103.04424. Search in Google Scholar

[38] L. Herrmann, K. Kirchner and C. Schwab, Multilevel approximation of Gaussian random fields: Fast simulation, Math. Models Methods Appl. Sci. 30 (2020), no. 1, 181–223. 10.1142/S0218202520500050Search in Google Scholar

[39] V. Ivrii, 100 years of Weyl’s law, Bull. Math. Sci. 6 (2016), no. 3, 379–452. 10.1007/s13373-016-0089-ySearch in Google Scholar

[40] E. Jansson, M. Kovács and A. Lang, Surface finite element approximation of spherical Whittle–Matérn Gaussian random fields, SIAM J. Sci. Comput. 44 (2022), no. 2, A825–A842. 10.1137/21M1400717Search in Google Scholar

[41] T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan 13 (1961), 246–274. 10.2969/jmsj/01330246Search in Google Scholar

[42] A. V. Knyazev and J. E. Osborn, New a priori FEM error estimates for eigenvalues, SIAM J. Numer. Anal. 43 (2006), no. 6, 2647–2667. 10.1137/040613044Search in Google Scholar

[43] A. Lang and M. Pereira, Galerkin–Chebyshev approximation of Gaussian random fields on compact Riemannian manifolds, BIT 63 (2023), no. 4, Paper No. 51. 10.1007/s10543-023-00986-8Search in Google Scholar

[44] A. Lang and C. Schwab, Isotropic Gaussian random fields on the sphere: Regularity, fast simulation and stochastic partial differential equations, Ann. Appl. Probab. 25 (2015), no. 6, 3047–3094. 10.1214/14-AAP1067Search in Google Scholar

[45] O. P. Le Maître and O. M. Knio, Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics, Sci. Comput., Springer, New York, 2010. 10.1007/978-90-481-3520-2Search in Google Scholar

[46] F. Lindgren, D. Bolin and H. Rue, The SPDE approach for Gaussian and non-Gaussian fields: 10 years and still running, Spat. Stat. 50 (2022), Paper No. 100599. 10.1016/j.spasta.2022.100599Search in Google Scholar

[47] F. Lindgren, H. Rue and J. Lindström, An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach, J. R. Stat. Soc. Ser. B Stat. Methodol. 73 (2011), no. 4, 423–498. 10.1111/j.1467-9868.2011.00777.xSearch in Google Scholar

[48] M. Loève, Probability Theory. I, 4th ed., Grad. Texts in Math. 45, Springer, New York, 1977. 10.1007/978-1-4757-6288-4Search in Google Scholar

[49] M. Loève, Probability theory. II, 4th ed., Grad. Texts in Math. 46, Springer, New York, 1978. 10.1007/978-1-4612-6257-2Search in Google Scholar

[50] G. J. Lord, C. E. Powell and T. Shardlow, An Introduction to Computational Stochastic PDEs, Cambridge Texts Appl. Math., Cambridge University, New York, 2014. 10.1017/CBO9781139017329Search in Google Scholar

[51] J. Lund and K. L. Bowers, Sinc Methods for Quadrature and Differential Equations, Society for Industrial and Applied Mathematics, Philadelphia, 1992. 10.1137/1.9781611971637Search in Google Scholar

[52] D. Marinucci and G. Peccati, An Introduction to Computational Stochastic PDEs, Cambridge University, Cambridge, 2011. Search in Google Scholar

[53] B. Matérn, Spatial variation: Stochastic Models and Their Application to some Problems in Forest Surveys and Other Sampling Investigations, Meddelanden Fran Statens Skogsforskningsinst. 49 5, Statens Skogsforskningsinstitut, Stockholm, 1960, Search in Google Scholar

[54] K. Mekchay, P. Morin and R. H. Nochetto, AFEM for the Laplace–Beltrami operator on graphs: Design and conditional contraction property, Math. Comp. 80 (2011), no. 274, 625–648. 10.1090/S0025-5718-2010-02435-4Search in Google Scholar

[55] J. Mercer, Functions of positive and negative type and their connection with the theory of integral equations, Philos. Trans. R. Soc. A 209 (1909), no. 441–458, 415–446. 10.1098/rsta.1909.0016Search in Google Scholar

[56] F. Nobile and F. Tesei, A multi level Monte Carlo method with control variate for elliptic PDEs with log-normal coefficients, Stoch. Partial Differ. Equ. Anal. Comput. 3 (2015), no. 3, 398–444. 10.1007/s40072-015-0055-9Search in Google Scholar

[57] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, Adapt. Comput. Mach. Learn., MIT Press, Cambridge, 2006. 10.7551/mitpress/3206.001.0001Search in Google Scholar

[58] C. Schwab and R. A. Todor, Karhunen–Loève approximation of random fields by generalized fast multipole methods, J. Comput. Phys. 217 (2006), no. 1, 100–122. 10.1016/j.jcp.2006.01.048Search in Google Scholar

[59] M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, Springer Ser. Statist., Springer, New York, 1999. 10.1007/978-1-4612-1494-6Search in Google Scholar

[60] P. Whittle, On stationary processes in the plane, Biometrika 41 (1954), 434–449. 10.1093/biomet/41.3-4.434Search in Google Scholar

[61] P. Whittle, Stochastic processes in several dimensions, Bull. Inst. Internat. Statist. 40 (1963), 974–994. Search in Google Scholar

[62] D. Xiu and J. S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput. 27 (2005), no. 3, 1118–1139. 10.1137/040615201Search in Google Scholar

Received: 2022-11-23
Revised: 2023-11-30
Accepted: 2023-12-03
Published Online: 2024-01-04

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.5.2024 from https://www.degruyter.com/document/doi/10.1515/cmam-2022-0237/html
Scroll to top button