Skip to main content
Log in

On sufficient conditions for degrees of freedom counting of multi-field generalised Proca theories

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We derive conditions which are sufficient for theories consisting of multiple vector fields, which could also couple to non-dynamical external fields, to have the required structure of constraints of multi-field generalised Proca theories, so that the number of degrees of freedom is correct. The Faddeev–Jackiw constraint analysis is used and is cross-checked by Lagrangian constraint analysis. To ensure the theory is constraint, we impose a standard special form of Hessian matrix. The derivation benefits from the realisation that the theories are diffeomorphism invariance. The sufficient conditions obtained include a refinement of secondary-constraint enforcing relations derived previously in literature, as well as a condition which ensures that the iteration process of constraint analysis terminates. Some examples of theories are analysed to show whether they satisfy the sufficient conditions. Most notably, due to the obtained refinement on some of the conditions, some theories which are previously interpreted as being undesirable are in fact legitimate, and vice versa. This in turn affects the previous interpretations of cosmological implications which should later be reinvestigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data was analysed or generated in this work.

Notes

  1. Note that [33] points out that [32] has obtained incorrect secondary constraint. So the result of [32] are not correct. We thank Claudia de Rham for letting us know this recent development and related discussions.

  2. In this paper, the external fields are non-dynamical in the sense to be described in Sect. 2. The consideration of dynamics of the external fields especially gravity is not within the scope of this paper.

  3. The determinants in Eqs. (12), (13) and (15) are defined as follows. We combine the two indices of each vector field into one collective index. The matrices appearing within the determinants then have two collective indices. Standard definition for determinant then applies.

  4. It is understood that LHS of Eq. (103) is actually the pullback of \(\tilde{\Omega }_\alpha \) to tangent bundle. Throughout this paper, we do not use different notations to distinguish the functions from their pullbacks as it should be clear from the context.

References

  1. Glashow, S.L.: The renormalizability of vector meson interactions. Nucl. Phys. 10, 107–117 (1959). https://doi.org/10.1016/0029-5582(59)90196-8

    Article  CAS  Google Scholar 

  2. Salam, A., Ward, J.C.: Weak and electromagnetic interactions. Nuovo Cim. 11, 568–577 (1959). https://doi.org/10.1007/BF02726525

    Article  ADS  Google Scholar 

  3. Weinberg, S.: A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967). https://doi.org/10.1103/PhysRevLett.19.1264

    Article  ADS  Google Scholar 

  4. Higgs, P.W.: Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132–133 (1964). https://doi.org/10.1016/0031-9163(64)91136-9

    Article  ADS  Google Scholar 

  5. Higgs, P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964). https://doi.org/10.1103/PhysRevLett.13.508

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Englert, F., Brout, R.: Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964). https://doi.org/10.1103/PhysRevLett.13.321

    Article  ADS  MathSciNet  Google Scholar 

  7. Guralnik, G.S., Hagen, C.R., Kibble, T.W.B.: Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964). https://doi.org/10.1103/PhysRevLett.13.585

    Article  ADS  CAS  Google Scholar 

  8. Guth, A.H.: The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981). https://doi.org/10.1103/PhysRevD.23.347

    Article  ADS  CAS  Google Scholar 

  9. Perlmutter, S., et al.: Measurements of \(\Omega \) and \(\Lambda \) from 42 high redshift supernovae. Astrophys. J. 517, 565–586 (1999). https://doi.org/10.1086/307221. arXiv:astro-ph/9812133

    Article  ADS  Google Scholar 

  10. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998). https://doi.org/10.1086/300499. arXiv:astro-ph/9805201

    Article  ADS  Google Scholar 

  11. Rodríguez, Y., Navarro, A.A.: Non-Abelian \(S\)-term dark energy and inflation. Phys. Dark Univ. 19, 129–136 (2018). https://doi.org/10.1016/j.dark.2018.01.003. arXiv:1711.01935 [gr-qc]

    Article  Google Scholar 

  12. Gómez, L.G., Rodríguez, Y.: Stability conditions in the generalized SU(2) Proca theory. Phys. Rev. D 100(8), 084048 (2019). https://doi.org/10.1103/PhysRevD.100.084048. arXiv:1907.07961 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  13. Garnica, J.C., Gomez, L.G., Navarro, A.A., Rodriguez, Y.: Constant-roll inflation in the generalized SU(2) Proca theory. Ann. Phys. 534(2), 2100453 (2022). https://doi.org/10.1002/andp.202100453. arXiv:2109.10154 [gr-qc]

    Article  MathSciNet  Google Scholar 

  14. Proca, A.: Sur la theorie ondulatoire des electrons positifs et negatifs. J. Phys. Radium 7, 347–353 (1936). https://doi.org/10.1051/jphysrad:0193600708034700

    Article  CAS  Google Scholar 

  15. Born, M., Infeld, L.: Foundations of the new field theory. Proc. R. Soc. Lond. A 144(852), 425–451 (1934). https://doi.org/10.1098/rspa.1934.0059

    Article  ADS  Google Scholar 

  16. Dirac, P.A.M.: An extensible model of the electron. Proc. R. Soc. Lond. A 268, 57–67 (1962). https://doi.org/10.1098/rspa.1962.0124

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Tasinato, G.: Cosmic acceleration from Abelian symmetry breaking. JHEP 04, 067 (2014). https://doi.org/10.1007/JHEP04(2014)067. arXiv:1402.6450 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  18. Heisenberg, L.: Generalization of the Proca action. JCAP 05, 015 (2014). https://doi.org/10.1088/1475-7516/2014/05/015. arXiv:1402.7026 [hep-th]

    Article  ADS  Google Scholar 

  19. Hull, M., Koyama, K., Tasinato, G.: Covariantized vector Galileons. Phys. Rev. D 93(6), 064012 (2016). https://doi.org/10.1103/PhysRevD.93.064012. arXiv:1510.07029 [hep-th]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  20. Allys, E., Peter, P., Rodriguez, Y.: Generalized Proca action for an Abelian vector field. JCAP 02, 004 (2016). https://doi.org/10.1088/1475-7516/2016/02/004. arXiv:1511.03101 [hep-th]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  21. Beltran Jimenez, J., Heisenberg, L.: Derivative self-interactions for a massive vector field. Phys. Lett. B 757, 405–411 (2016). https://doi.org/10.1016/j.physletb.2016.04.017. arXiv:1602.03410 [hep-th]

    Article  ADS  CAS  Google Scholar 

  22. Allys, E., Beltran Almeida, J.P., Peter, P., Rodríguez, Y.: On the 4D generalized Proca action for an Abelian vector field. JCAP 09, 026 (2016). https://doi.org/10.1088/1475-7516/2016/09/026. arXiv:1605.08355 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  23. Rodriguez, Y., Navarro, A.A.: Scalar and vector Galileons. J. Phys: Conf. Ser. 831(1), 012004 (2017). https://doi.org/10.1088/1742-6596/831/1/012004. arXiv:1703.01884 [hep-th]

    Article  Google Scholar 

  24. Heisenberg, L.: A systematic approach to generalisations of general relativity and their cosmological implications. Phys. Rep. 796, 1–113 (2019). https://doi.org/10.1016/j.physrep.2018.11.006. arXiv:1807.01725 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  25. Sanongkhun, J., Vanichchapongjaroen, P.: On constrained analysis and diffeomorphism invariance of generalised Proca theories. Gen. Relativ. Gravit. 52(3), 26 (2020). https://doi.org/10.1007/s10714-020-02678-y. arXiv:1907.12794 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  26. Ostrogradsky, M.: Mémoires sur les équations différentielles, relatives au problème des isopérimètres. Mem. Acad. St. Petersbg. 6(4), 385–517 (1850)

    Google Scholar 

  27. Heisenberg, L., Kase, R., Tsujikawa, S.: Beyond generalized Proca theories. Phys. Lett. B 760, 617–626 (2016). https://doi.org/10.1016/j.physletb.2016.07.052. arXiv:1605.05565 [hep-th]

    Article  ADS  CAS  Google Scholar 

  28. Gallego Cadavid, A., Rodriguez, Y.: A systematic procedure to build the beyond generalized Proca field theory. Phys. Lett. B 798, 134958 (2019). https://doi.org/10.1016/j.physletb.2019.134958. arXiv:1905.10664 [hep-th]

    Article  MathSciNet  CAS  Google Scholar 

  29. Beltrán Jiménez, J., de Rham, C. Heisenberg, L.: Generalized Proca and its constraint algebra. Phys. Lett. B 802, 135244 (2020). https://doi.org/10.1016/j.physletb.2020.135244. arXiv:1906.04805 [hep-th]

  30. de Rham, C. Heisenberg, L., Kumar, A., Zosso, J.: Quantum stability of a new Proca theory. Phys. Rev. D 105(2), 024033 (2022). https://doi.org/10.1103/PhysRevD.105.024033. arXiv:2108.12892 [hep-th]

  31. de Rham, C. Garcia-Saenz, S., Heisenberg, L., Pozsgay, V.: Cosmology of extended Proca-Nuevo. JCAP 03, 053 (2022). https://doi.org/10.1088/1475-7516/2022/03/053. arXiv:2110.14327 [hep-th]

  32. Díez, V.E.: (Extended) Proca-Nuevo under the two-dimensional loupe (2022). arXiv:2212.02549 [hep-th]

  33. de Rham, C. Garcia-Saenz, S., Heisenberg, L., Pozsgay, V., Wang, X.: To Half-Be or Not To Be? JHEP 06, 088 (2023). https://doi.org/10.1007/JHEP06(2023)088. arXiv:2303.05354 [hep-th]

  34. Errasti Díez, V., Gording, B., Méndez-Zavaleta, J.A., Schmidt-May, A.: Maxwell–Proca theory: definition and construction. Phys. Rev. D 101(4), 045009 (2020). https://doi.org/10.1103/PhysRevD.101.045009. arXiv:1905.06968 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  35. Errasti Díez, V., Gording, B., Méndez-Zavaleta, J.A., Schmidt-May, A.: Complete theory of Maxwell and Proca fields. Phys. Rev. D 101(4), 045008 (2020). https://doi.org/10.1103/PhysRevD.101.045008. arXiv:1905.06967 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  36. Gallego Cadavid, A., Rodriguez, Y., Gómez, L.G.: Generalized SU(2) Proca theory reconstructed and beyond. Phys. Rev. D 102(10), 104066 (2020). https://doi.org/10.1103/PhysRevD.102.104066. arXiv:2009.03241 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  37. Errasti Díez, V., Maier, M., Méndez-Zavaleta, J.A., Taslimi Tehrani, M.: Lagrangian constraint analysis of first-order classical field theories with an application to gravity. Phys. Rev. D 102, 065015 (2020). https://doi.org/10.1103/PhysRevD.102.065015. arXiv:2007.11020 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  38. Faddeev, L.D., Jackiw, R.: Hamiltonian reduction of unconstrained and constrained systems. Phys. Rev. Lett. 60, 1692–1694 (1988). https://doi.org/10.1103/PhysRevLett.60.1692

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  39. Jackiw, R.: (Constrained) quantization without tears. In: 2nd Workshop on Constraint Theory and Quantization Methods, pp. 367–381 (1993)

  40. Barcelos-Neto, J., Wotzasek, C.: Faddeev–Jackiw quantization and constraints. Int. J. Mod. Phys. A 7, 4981–5004 (1992). https://doi.org/10.1142/S0217751X9200226X

    Article  ADS  MathSciNet  Google Scholar 

  41. Barcelos-Neto, J., Wotzasek, C.: Symplectic quantization of constrained systems. Mod. Phys. Lett. A 7, 1737–1748 (1992). https://doi.org/10.1142/S0217732392001439

    Article  ADS  MathSciNet  Google Scholar 

  42. Allys, E., Peter, P., Rodriguez, Y.: Generalized SU(2) Proca theory. Phys. Rev. D 94(8), 084041 (2016). https://doi.org/10.1103/PhysRevD.94.084041. arXiv:1609.05870 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  43. Errasti Díez, V., Marinkovic, M.K.: Symplectic quantization of multifield generalized Proca electrodynamics. Phys. Rev. D 105(10), 105022 (2022). https://doi.org/10.1103/PhysRevD.105.105022. arXiv:2112.11477 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  44. Toms, D.J.: Faddeev–Jackiw quantization and the path integral. Phys. Rev. D 92(10), 105026 (2015). https://doi.org/10.1103/PhysRevD.92.105026. arXiv:1508.07432 [hep-th]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  45. Dirac, P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148 (1950). https://doi.org/10.4153/CJM-1950-012-1

    Article  MathSciNet  Google Scholar 

  46. Dirac, P.A.M.: Lectures on Quantum Mechanics. Belfer Graduate School of Science, Monograph Series. Dover Publications, Berlin (2001)

  47. Rodrigues, D.C., Galvão, M., Pinto-Neto, N.: Hamiltonian analysis of General Relativity and extended gravity from the iterative Faddeev–Jackiw symplectic approach. Phys. Rev. D 98(10), 104019 (2018). https://doi.org/10.1103/PhysRevD.98.104019. arXiv:1808.06751 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  48. Kamimura, K.: Singular Lagrangian and constrained Hamiltonian systems: generalized canonical formalism. Nuovo Cim. B 68, 22 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Sheng-Lan Ko for interests and discussions. We would also like to thank Claudia de Rham for interests, discussions, and comments. Furthermore, we are grateful to anonymous referees for useful comments and suggestions which improve our manuscript. S.J. is supported by the Research Professional Development Project Under the Science Achievement Scholarship of Thailand (SAST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pichet Vanichchapongjaroen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Conditions from diffeomorphism invariance

In this appendix, we consider a class of theories described in Sect. 2. Since these theories are diffeomorphism invariant, their Lagrangians would satisfy the conditions to be presented in this appendix.

Under diffeomorphism \(x^\mu \mapsto x^\mu - \epsilon ^\mu (x),\) the vector fields transform as

$$\begin{aligned} \delta _\epsilon A_\mu ^\alpha =\epsilon ^\nu \partial _\nu A_\mu ^\alpha + A_\nu ^\alpha \partial _\mu \epsilon ^\nu , \end{aligned}$$
(A1)

and the external fields \(\{K\}\) transform under standard diffeomorphism. The Lagrangian density transforms as

$$\begin{aligned} \delta _\epsilon \mathcal{L}=\partial _\mu (\epsilon ^\mu \mathcal{L}). \end{aligned}$$
(A2)

Demanding the expression \(\delta _\epsilon \mathcal{L}- \partial _\mu (\epsilon ^\mu \mathcal{L})\) to vanish will give rise to useful conditions. In order to evaluate this expression, we begin by recall that \(\mathcal{L}= T + U_\alpha \dot{A}^\alpha _0.\) Then we consider

$$\begin{aligned} \delta _\epsilon T= & {} \frac{\partial T}{\partial A^\alpha _\nu }\delta _\epsilon A^\alpha _\nu + \frac{\partial T}{\partial \partial _k A_\nu ^\alpha }\partial _k \delta _\epsilon A_\nu ^\alpha +\frac{\partial T}{\partial \dot{A}_k^\alpha }\partial _0 \delta _\epsilon A_k^\alpha \nonumber \\{} & {} +\frac{\partial T}{\partial \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}(K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}}\nonumber \\{} & {} \times \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}\delta _\epsilon ( K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}. \end{aligned}$$
(A3)

Next, let us consider

$$\begin{aligned} -\partial _\mu (\epsilon ^\mu T)= & {} -\partial _\mu \epsilon ^\mu T - \epsilon ^\mu \left( \frac{\partial T}{\partial A^\alpha _\nu }\partial _\mu A^\alpha _\nu + \frac{\partial T}{\partial \partial _k A_\nu ^\alpha }\partial _k \partial _\mu A_\nu ^\alpha +\frac{\partial T}{\partial \dot{A}_k^\alpha }\partial _0 \partial _\mu A_k^\alpha \right) \nonumber \\{} & {} -\epsilon ^\mu \frac{\partial T}{\partial \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}(K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}} \nonumber \\{} & {} \times \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}\partial _\mu ( K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}. \end{aligned}$$
(A4)

Combining the two expressions, we obtain

$$\begin{aligned}{} & {} \delta _\epsilon T-\partial _\mu (\epsilon ^\mu T)\nonumber \\{} & {} \quad =\frac{\partial T}{\partial A_\nu ^\alpha }A_\mu ^\alpha \partial _\nu \epsilon ^\mu + \frac{\partial T}{\partial \partial _k A_\nu ^\alpha }\left( \partial _k\epsilon ^\mu \partial _\mu A_\nu ^\alpha + \partial _k A_\mu ^\alpha \partial _\nu \epsilon ^\mu + A_\mu ^\alpha \partial _k\partial _\nu \epsilon ^\mu \right) \nonumber \\{} & {} \qquad +\frac{\partial T}{\partial \dot{A}_k^\alpha }\left( \dot{\epsilon }^\mu \partial _\mu A_k^\alpha + \dot{A}_\mu ^\alpha \partial _k\epsilon ^\mu + A_\mu ^\alpha \partial _k\dot{\epsilon }^\mu \right) -\partial _\mu \epsilon ^\mu T\nonumber \\{} & {} \qquad +\frac{\partial T}{\partial \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}(K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}} \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}\delta _\epsilon ( K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}\nonumber \\{} & {} \qquad -\epsilon ^\mu \frac{\partial T}{\partial \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}(K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}} \nonumber \\{} & {} \qquad \times \partial _{\rho _1} \cdots \partial _{\rho _{r'''}}\partial _\mu ( K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}. \end{aligned}$$
(A5)

Let us also compute

$$\begin{aligned} \delta _\epsilon \left( U_\beta \dot{A}_0^\beta \right)= & {} \frac{\partial U_\beta }{\partial A^\alpha _\nu }\left( \epsilon ^\mu \partial _\mu A^\alpha _\nu + A^\alpha _\mu \partial _\nu \epsilon ^\mu \right) \dot{A}_0^\beta +\frac{\partial U_\beta }{\partial \partial _i A^\alpha _\nu }\partial _i\left( \epsilon ^\mu \partial _\mu A^\alpha _\nu + A^\alpha _\mu \partial _\nu \epsilon ^\mu \right) \dot{A}_0^\beta \nonumber \\{} & {} +\dot{A}_0^\beta \frac{\partial U_\beta }{\partial \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}(K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}} \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}\delta _\epsilon ( K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}\nonumber \\{} & {} +U_\beta \partial _0\left( \epsilon ^\mu \partial _\mu A_0^\beta + A^\beta _\nu \partial _0\epsilon ^\nu \right) , \end{aligned}$$
(A6)

and

$$\begin{aligned}{} & {} -\partial _\mu (\epsilon ^\mu U_\beta \dot{A}_0^\beta )\nonumber \\{} & {} \quad =-\partial _\mu \epsilon ^\mu U_\beta \dot{A}_0^\beta -\epsilon ^\mu \left( \frac{\partial U_\beta }{\partial A^\alpha _\nu }\partial _\mu A^\alpha _\nu +\frac{\partial U_\beta }{\partial \partial _i A^\alpha _\nu }\partial _i\partial _\mu A^\alpha _\nu \right) \dot{A}_0^\beta \nonumber \\{} & {} \qquad -\epsilon ^\mu \dot{A}_0^\beta \frac{\partial U_\beta }{\partial \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}(K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}} \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}\partial _\mu ( K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}\nonumber \\{} & {} \qquad -\epsilon ^\mu U_\beta \partial _\mu \dot{A}_0^\beta . \end{aligned}$$
(A7)

So we have

$$\begin{aligned}{} & {} \delta _\epsilon (U_\beta \dot{A}_0^\beta ) - \partial _\mu (\epsilon ^\mu U_\beta \dot{A}_0^\beta )\nonumber \\{} & {} \quad = \frac{\partial U_\beta }{\partial A^\alpha _\nu }A^\alpha _\mu \partial _\nu \epsilon ^\mu \dot{A}_0^\beta +U_\beta (\dot{\epsilon }^\mu \partial _\mu A_0^\beta +\epsilon ^\mu \partial _\mu \dot{A}_0^\beta + \dot{A}^\beta _\nu \partial _0\epsilon ^\nu +A^\beta _\nu \ddot{\epsilon }^\nu )\nonumber \\{} & {} \qquad -\partial _\mu \epsilon ^\mu U_\beta \dot{A}_0^\beta -\epsilon ^\mu U_\beta \partial _\mu \dot{A}_0^\beta \nonumber \\{} & {} \qquad +\frac{\partial U_\beta }{\partial \partial _i A^\alpha _\nu }(\partial _i\epsilon ^\mu \partial _\mu A^\alpha _\nu + \partial _iA^\alpha _\mu \partial _\nu \epsilon ^\mu +A^\alpha _\mu \partial _i\partial _\nu \epsilon ^\mu )\dot{A}_0^\beta \nonumber \\{} & {} \qquad +\dot{A}_0^\beta \frac{\partial U_\beta }{\partial \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}(K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}} \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}\delta _\epsilon ( K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}\nonumber \\{} & {} \qquad -\epsilon ^\mu \dot{A}_0^\beta \frac{\partial U_\beta }{\partial \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}(K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}} \nonumber \\{} & {} \qquad \times \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}\partial _\mu ( K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}. \end{aligned}$$
(A8)

Combining Eq. (A5) with Eq. (A8), we obtain the expression for \(\delta _\epsilon \mathcal{L}- \partial _\mu (\epsilon ^\mu \mathcal{L}).\)

We are now ready to obtain useful conditions. Let us note that the expression \(\delta _\epsilon \mathcal{L}- \partial _\mu (\epsilon ^\mu \mathcal{L})\) is a polynomial in \(\dot{A}_0^\alpha \) up to degree two. Consider the term containing \(\dot{A}_0^\alpha \dot{A}_0^\beta \) in \(\delta _\epsilon \mathcal{L}- \partial _\mu (\epsilon ^\mu \mathcal{L})\). It can easily be seen that there is only one term which is

$$\begin{aligned} \frac{\partial U_\beta }{\partial \partial _i A_0^\alpha }\partial _i\epsilon ^0\dot{A}_0^\alpha \dot{A}_0^\beta . \end{aligned}$$
(A9)

Demanding this expression to vanish gives

$$\begin{aligned} \frac{\partial U_\alpha }{\partial \partial _i A_0^\beta } +\frac{\partial U_\beta }{\partial \partial _i A_0^\alpha } =0. \end{aligned}$$
(A10)

Let us next turn to the coefficients of \(\dot{A}_0^\beta .\) For this, it would be convenient to consider Eqs. (A5) and (A8) and collect the terms proportional to \(\dot{A}_0^\beta .\) We have

$$\begin{aligned} \delta _\epsilon T - \partial _\mu (\epsilon ^\mu T) \ni \frac{\partial T}{\partial \partial _k A_0^\alpha }\partial _k\epsilon ^0\dot{A}_0^\alpha +\frac{\partial T}{\partial \dot{A}_k^\alpha }\dot{A}_0^\alpha \partial _k\epsilon ^0, \end{aligned}$$
(A11)

and

$$\begin{aligned}{} & {} \delta _\epsilon (U_\beta \dot{A}_0^\beta ) - \partial _\mu (\epsilon ^\mu U_\beta \dot{A}_0^\beta )\nonumber \\{} & {} \quad \ni \frac{\partial U_\beta }{\partial A^\alpha _\nu }A^\alpha _\mu \partial _\nu \epsilon ^\mu \dot{A}_0^\beta +U_\beta (\dot{\epsilon }^0\dot{A}_0^\beta + \dot{A}^\beta _0\dot{\epsilon }^0) -\partial _\mu \epsilon ^\mu U_\beta \dot{A}_0^\beta \nonumber \\{} & {} \qquad +\frac{\partial U_\beta }{\partial \partial _i A^\alpha _\nu }(\partial _i\epsilon ^\mu \partial _\mu A^\alpha _\nu + \partial _iA^\alpha _\mu \partial _\nu \epsilon ^\mu +A^\alpha _\mu \partial _i\partial _\nu \epsilon ^\mu )\bigg |_{\dot{A}_0^\alpha = 0}\dot{A}_0^\beta \nonumber \\{} & {} \qquad +\dot{A}_0^\beta \frac{\partial U_\beta }{\partial \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}(K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}} \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}\delta _\epsilon ( K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}\nonumber \\{} & {} \qquad -\epsilon ^\mu \dot{A}_0^\beta \frac{\partial U_\beta }{\partial \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}(K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}} \nonumber \\{} & {} \qquad \times \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}\partial _\mu ( K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}. \end{aligned}$$
(A12)

Therefore, we have

$$\begin{aligned}{} & {} \frac{\partial T}{\partial \partial _k A_0^\beta }\partial _k\epsilon ^0 +\frac{\partial T}{\partial \dot{A}_k^\beta }\partial _k\epsilon ^0 +\frac{\partial U_\beta }{\partial A^\alpha _\nu }A^\alpha _\mu \partial _\nu \epsilon ^\mu +2U_\beta \dot{\epsilon }^0-\partial _\mu \epsilon ^\mu U_\beta \nonumber \\{} & {} \quad +\frac{\partial U_\beta }{\partial \partial _i A^\alpha _\nu }(\partial _i\epsilon ^\mu \partial _\mu A^\alpha _\nu + \partial _iA^\alpha _\mu \partial _\nu \epsilon ^\mu +A^\alpha _\mu \partial _i\partial _\nu \epsilon ^\mu )\bigg |_{\dot{A}_0^\alpha = 0}\nonumber \\{} & {} \qquad +\frac{\partial U_\beta }{\partial \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}(K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}} \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}\delta _\epsilon ( K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}\nonumber \\{} & {} \qquad -\epsilon ^\mu \frac{\partial U_\beta }{\partial \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}(K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}} \nonumber \\{} & {} \qquad \times \partial _{\rho _1} \cdots \partial _{\rho _{r'''}}\partial _\mu ( K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}} =0. \end{aligned}$$
(A13)

Although the above equation looks complicated especially due to the explicit presence of external fields, we will only extract some parts of this equation to obtain the conditions that we will need. These conditions will look much more simple. For example, the dependence on the external fields and their derivatives are only through T and \(U_\beta .\) We may derive these conditions as follows. Taking derivative of Eq. (A13) with respect to \(\dot{A}_j^\alpha \) gives

$$\begin{aligned} \frac{\partial ^2 T}{\partial \partial _k A_0^\beta \partial \dot{A}_j^\alpha } +\frac{\partial ^2 T}{\partial \dot{A}_k^\beta \partial \dot{A}_j^\alpha } +\frac{\partial U_\beta }{\partial \partial _k A_j^\alpha } =0. \end{aligned}$$
(A14)

Let us take derivative of Eq. (A13) with respect to \(\partial _j A_0^\alpha \), then swap the indices \(\alpha \) and \(\beta \), add it to the original equation, and use Eq. (A10), we obtain

$$\begin{aligned} 2\frac{\partial ^2 T}{\partial \partial _j A_0^{(\alpha }\partial \partial _k A_0^{\beta )}} \!+\!2\frac{\partial ^2 T}{\partial \partial _j A_0^{(\alpha }\partial \dot{A}_k^{\beta )}} \!+\!\frac{\partial U_{\beta }}{\partial \partial _j A^{\alpha }_k} \!+\!\frac{\partial U_{\alpha }}{\partial \partial _j A^{\beta }_k} =0. \end{aligned}$$
(A15)

Expressing in phase space, the conditions Eqs. (A14)–(A15) become

$$\begin{aligned} \frac{\partial ^2 \mathcal{T}}{\partial \partial _k A_0^\beta \partial \Lambda _j^\alpha } +\frac{\partial ^2 \mathcal{T}}{\partial \Lambda _k^\beta \partial \Lambda _j^\alpha } +\frac{\partial U_\beta }{\partial \partial _k A_j^\alpha } =0, \end{aligned}$$
(A16)

and

$$\begin{aligned} 2\frac{\partial ^2 \mathcal{T}}{\partial \partial _j A_0^{(\alpha }\partial \partial _k A_0^{\beta )}} \!+\!2\frac{\partial ^2 \mathcal{T}}{\partial \partial _j A_0^{(\alpha }\partial \Lambda _k^{\beta )}} \!+\!\frac{\partial U_{\beta }}{\partial \partial _j A^{\alpha }_k} \!+\!\frac{\partial U_{\alpha }}{\partial \partial _j A^{\beta }_k}=0. \end{aligned}$$
(A17)

By substituting Eq. (A16) into Eq. (A17), we obtain

$$\begin{aligned} \frac{\partial ^2 \mathcal{T}}{\partial \partial _{(j|} A_{0}^\alpha \partial \partial _{|k)} A_0^\beta } -\frac{\partial ^2 \mathcal{T}}{\partial \Lambda _{(j}^\alpha \partial \Lambda _{k)}^\beta } =0. \end{aligned}$$
(A18)

Appendix B: Expressions of \(\partial \phi _\alpha /\partial \partial _{\mathcal{I}}\dot{Q}^\beta \) in phase space

In this appendix, we outline necessary steps to express \(\partial \phi _\alpha /\partial \partial _{\mathcal{I}}\dot{Q}^\beta \) in phase space. We use the same set-up and notations as those given in Sects. 23. For convenient, let us denote \(P_A\) and \(\Lambda ^A\) as collective for \(\pi _\alpha ^i\) and \(\Lambda ^\alpha _i,\) respectively.

The idea is to first express \(\partial \phi _\alpha /\partial \partial _{\mathcal{I}}\dot{Q}^\beta \) in terms of \(\alpha _M\). This can be achieved by recalling from Sect. 3 the Eq. (98). Recall also that diffeomorphism invariance requirements and demanding \(\dot{\alpha }_\alpha = 0\) to not introduce further dynamics on the vector fields imply that \(\partial \alpha _\alpha /\partial \dot{Q}^\beta = 0 = \partial \alpha _\alpha /\partial \partial _i\dot{Q}^\beta \). Furthermore, due to the form of the Lagrangian of interest, we also have \(\partial \alpha _\alpha /\partial \partial _{i_1}\partial _{i_2}\cdots \partial _{i_l}\dot{Q}^\beta = 0\) for \(l\ge 2.\) So

$$\begin{aligned} \frac{\partial \alpha _\alpha }{\partial \partial _\mathcal{I}\dot{Q}^\beta } = 0. \end{aligned}$$
(B1)

Then since \(\phi _\alpha = \dot{\alpha }_\alpha \) we have, from Eqs. (98) and (B1)

$$\begin{aligned} \phi _\alpha= & {} \sum _{|\mathcal{I}|=0}^2\frac{\partial \alpha _\alpha }{\partial \partial _\mathcal{I}Q^M}\partial _\mathcal{I}\dot{Q}^M -\sum _{|\mathcal{I}|=0}^1\frac{\partial \alpha _\alpha }{\partial \partial _\mathcal{I}\dot{Q}^B}\partial _\mathcal{I}(M^{BC}\alpha _C)\nonumber \\{} & {} +\frac{\partial \alpha _\alpha }{\partial \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}(K^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}} \partial _{\rho _1}\cdots \partial _{\rho _{r'''}}(\dot{K}^{(r)})_{\mu _1\cdots \mu _{r'}}{}^{\nu _1\cdots \nu _{r''}}. \end{aligned}$$
(B2)

Due to Eq. (B1), it can be seen that \(\phi _\alpha \) depend on \(\partial _{\mathcal{I}}\dot{Q}^\beta \) only through the expressions \(\partial _\mathcal{I}\dot{Q}^M\) and \(\partial _\mathcal{I}(M^{BC}\alpha _C)\) which appear in the above equation. This gives

$$\begin{aligned} \frac{\partial \phi _\alpha }{\partial \partial _{\mathcal{I}}\dot{Q}^\beta } =\frac{\partial \alpha _\alpha }{\partial \partial _{\mathcal{I}}Q^\beta } -\frac{\partial \alpha _\alpha }{\partial \partial _{\mathcal{J}}\dot{Q}^A}\frac{\partial \partial _{\mathcal{J}}(M^{AB}\alpha _B)}{\partial \partial _{\mathcal{I}}\dot{Q}^\beta }. \end{aligned}$$
(B3)

We then need to compute each expression on RHS of Eq. (B3). For this, let us directly express \(\alpha _A\) in terms of Lagrangian then transforming to phase space, but transform \(\alpha _\alpha \) to \(-\tilde{\Omega }_\alpha \) (cf. Equation (104)). Direct calculations can be given as follows. In order to evaluate \({\partial \partial _\mathcal{J}(M^{AB}\alpha _B)}/{\partial \partial _\mathcal{I}\dot{Q}^\beta }\) we note that \(\partial M^{AB}/\partial \partial _\mathcal{I}\dot{Q}^\beta = 0\) for \(|\mathcal{I}|\ge 0\) whereas \(\alpha _B\) depends on \(\dot{Q}^\beta \) and \(\partial _i\dot{Q}^\beta \) but not on \(\partial _\mathcal{I}\dot{Q}^\beta \) where \(|\mathcal{I}|\ge 2.\) By writing \(\partial _k\alpha _B\) using chain rule and taking derivative with respect to \(\partial _\mathcal{I}\dot{Q}^\beta ,\) we obtain

$$\begin{aligned} \frac{\partial \partial _k\alpha _B}{\partial \partial _i\partial _j\dot{Q}^\beta }= & {} \frac{\partial \alpha _B}{\partial \partial _l\dot{Q}^\beta }\delta _{(k}^i\delta _{l)}^j,\quad \frac{\partial \partial _j\alpha _B}{\partial \partial _i\dot{Q}^\beta } =\partial _j\frac{\partial \alpha _B}{\partial \partial _i\dot{Q}^\beta } +\delta ^i_j \frac{\partial \alpha _B}{\partial \dot{Q}^\beta },\nonumber \\ \frac{\partial \partial _j\alpha _B}{\partial \dot{Q}^\beta }= & {} \partial _j\frac{\partial \alpha _B}{\partial \dot{Q}^\beta }. \end{aligned}$$
(B4)

This gives

$$\begin{aligned} \frac{\partial \partial _k(M^{AB}\alpha _B)}{\partial \partial _i\partial _j\dot{Q}^\beta }= & {} \frac{\partial ((\partial _kM^{AB})\alpha _B+M^{AB}\partial _k\alpha _B)}{\partial \partial _i\partial _j\dot{Q}^{\beta }}\nonumber \\= & {} M^{AB}\frac{\partial \partial _k\alpha _B}{\partial \partial _i\partial _j\dot{Q}^\beta }\nonumber \\= & {} M^{AB}\frac{\partial \alpha _B}{\partial \partial _l\dot{Q}^\beta }\delta _{(k}^i\delta _{l)}^j, \end{aligned}$$
(B5)
$$\begin{aligned} \frac{\partial \partial _j(M^{AB}\alpha _B)}{\partial \partial _i\dot{Q}^\beta }= & {} \partial _j\left( M^{AB}\frac{\partial \alpha _B}{\partial \partial _i\dot{Q}^\beta }\right) +\delta _j^iM^{AB}\frac{\partial \alpha _B}{\partial \dot{Q}^\beta }, \end{aligned}$$
(B6)
$$\begin{aligned} \frac{\partial \partial _j(M^{AB}\alpha _B)}{\partial \dot{Q}^\beta }= & {} \partial _j\left( M^{AB}\frac{\partial \alpha _B}{{\partial \dot{Q}^\beta }}\right) . \end{aligned}$$
(B7)

Next, let us express \(\partial \alpha _B/\partial \partial _\mathcal{I}\dot{Q}^\beta \) in terms of phase space variables. The calculations will involve \(\partial (\partial _j(\partial \mathcal{L}/\partial \partial _j Q^B))/\partial \partial _\mathcal{I}\dot{Q}^\beta ,\) which can be computed by first using the chain rule for \(\partial _j\) and then taking derivative with respect to \(\partial _\mathcal{I}\dot{Q}^\beta .\) The relevant results are

$$\begin{aligned} \frac{\partial }{\partial \dot{Q}^\beta }\left( \partial _i\left( \frac{\partial \mathcal{L}}{\partial \partial _i Q^B}\right) \right)= & {} \partial _i\left( \frac{\partial ^2\mathcal{L}}{\partial \dot{Q}^\beta \partial \partial _i Q^B}\right) ,\nonumber \\ \frac{\partial }{\partial \partial _i\dot{Q}^\beta }\left( \partial _j\left( \frac{\partial \mathcal{L}}{\partial \partial _j Q^B}\right) \right)= & {} \frac{\partial ^2\mathcal{L}}{\partial \dot{Q}^\beta \partial \partial _i Q^B}. \end{aligned}$$
(B8)

So

$$\begin{aligned} \frac{\partial \alpha _B}{\partial \dot{Q}^\beta }= & {} \frac{\partial ^2\mathcal{L}}{\partial \dot{Q}^B\partial Q^\beta }+\partial _i\Bigg (\frac{\partial ^2\mathcal{L}}{\partial \dot{Q}^\beta \partial \partial _iQ^B}\Bigg )-\frac{\partial ^2\mathcal{L}}{\partial \dot{Q}^\beta \partial Q^B}\nonumber \\= & {} \frac{\partial ^2\mathcal{T}}{\partial Q^\beta \partial \Lambda ^B} +\partial _i\left( \frac{\partial U_\beta }{\partial \partial _iQ^B}\right) -\frac{\partial U_\beta }{\partial Q^B}, \end{aligned}$$
(B9)
$$\begin{aligned} \frac{\partial \alpha _B}{\partial \partial _i\dot{Q}^\beta }= & {} \frac{\partial ^2\mathcal{L}}{\partial \partial _i Q^\beta \partial \dot{Q}^B}+\frac{\partial ^2\mathcal{L}}{\partial \partial _iQ^B\partial \dot{Q}^\beta }\nonumber \\= & {} \frac{\partial ^2 \mathcal{T}}{\partial \partial _i Q^\beta \partial \Lambda ^B} +\frac{\partial U_\beta }{\partial \partial _iQ^B}. \end{aligned}$$
(B10)

Next, let us express \(\partial \alpha _\alpha /\partial \partial _\mathcal{I}Q^\beta \) in phase space. For this, we first use Eq. (104) to transform \(\alpha _\alpha \) to \(-\tilde{\Omega }_\alpha .\) More precisely, this is

$$\begin{aligned} \alpha _\alpha =-\tilde{\Omega }_\alpha \left( Q^M,\partial _i Q^M,\partial _i\partial _j Q^M,P_B,\partial _i P_B,\{K,\partial K,\partial \partial K,\ldots \}\right) , \end{aligned}$$
(B11)

such that \(P_B = P_B(Q^M,\partial _i Q^M,\dot{Q}^B,\{K,\partial K,\partial \partial K,\ldots \})\), in which both sides of Eq. (B11) are both functions on the tangent bundle. So when taking derivative of \(\alpha _\alpha \) with respect to \(\partial _\mathcal{I}Q^\beta ,\) we need to also take into account that \(P_B\) and \(\partial _i P_B\) also depend on \(\partial _\mathcal{I}Q^\beta .\) As part of the intermediate calculations, we need to compute \(\partial \partial _k P_B/\partial \partial _\mathcal{I}Q^\beta ,\) which can be done by first writing \(\partial _k P_B\) using chain rule, then taking derivative with respect to \(\partial _\mathcal{I}Q^\beta .\) We have

$$\begin{aligned} \frac{\partial \partial _k P_B}{\partial \partial _i\partial _j Q^\beta }= & {} \frac{\partial P_B}{\partial \partial _l Q^\beta }\delta ^i_{(k}\delta ^j_{l)},\quad \frac{\partial \partial _k P_B}{\partial \partial _i Q^\beta } =\partial _k\left( \frac{\partial P_B}{\partial \partial _i Q^\beta }\right) +\delta ^i_k \frac{\partial P_B}{\partial Q^\beta },\nonumber \\ \frac{\partial \partial _k P_B}{\partial Q^\beta }= & {} \partial _k\left( \frac{\partial P_B}{\partial Q^\beta }\right) . \end{aligned}$$
(B12)

Then we use Eq. (45), which is equivalent to \(P_B = \partial \mathcal{T}/\partial \Lambda ^B.\) Keeping these in mind, we have

$$\begin{aligned} \frac{\partial \alpha _\alpha }{\partial \partial _i\partial _jQ^\beta }= & {} -\frac{\partial \tilde{\Omega }_\alpha }{\partial \partial _i\partial _jQ^\beta } -\frac{\partial \tilde{\Omega }_\alpha }{\partial \partial _{(i|}P_B}\frac{\partial P_B }{\partial \partial _{|j)}Q^\beta }\nonumber \\= & {} -\frac{\partial \tilde{\Omega }_\alpha }{\partial \partial _i\partial _jQ^\beta } -\frac{\partial \tilde{\Omega }_\alpha }{\partial \partial _{(i|}P_B}\frac{\partial ^2\mathcal{T}}{\partial \partial _{|j)}Q^\beta \partial \Lambda ^B}, \end{aligned}$$
(B13)
$$\begin{aligned} \frac{\partial \alpha _\alpha }{\partial \partial _iQ^\beta }= & {} -\frac{\partial \tilde{\Omega }_\alpha }{\partial \partial _iQ^\beta } -\frac{\partial \tilde{\Omega }_\alpha }{\partial \partial _\mathcal{I}P_B}\partial _\mathcal{I}\left( \frac{\partial P_B }{\partial \partial _iQ^\beta }\right) -\frac{\partial \tilde{\Omega }_\alpha }{\partial \partial _iP_B}\frac{\partial P_B}{\partial Q^\beta }\nonumber \\= & {} -\frac{\partial \tilde{\Omega }_\alpha }{\partial \partial _iQ^\beta } -\frac{\partial \tilde{\Omega }_\alpha }{\partial \partial _\mathcal{I}P_B}\partial _\mathcal{I}\left( \frac{\partial ^2\mathcal{T}}{\partial \partial _iQ^\beta \partial \Lambda ^B}\right) \nonumber \\{} & {} -\frac{\partial \tilde{\Omega }_\alpha }{\partial \partial _iP_B}\frac{\partial ^2\mathcal{T}}{\partial Q^\beta \partial \Lambda ^B}, \end{aligned}$$
(B14)
$$\begin{aligned} \frac{\partial \alpha _\alpha }{\partial Q^\beta }= & {} -\frac{\partial \tilde{\Omega }_\alpha }{\partial Q^\beta } -\frac{\partial \tilde{\Omega }_\alpha }{\partial \partial _\mathcal{I}P_B}\partial _\mathcal{I}\left( \frac{\partial P_B }{\partial Q^\beta }\right) \nonumber \\= & {} -\frac{\partial \tilde{\Omega }_\alpha }{\partial Q^\beta } -\frac{\partial \tilde{\Omega }_\alpha }{\partial \partial _\mathcal{I}P_B}\partial _\mathcal{I}\left( \frac{\partial ^2\mathcal{T}}{\partial Q^\beta \partial \Lambda ^B}\right) . \end{aligned}$$
(B15)

Finally, let us compute \(\partial \alpha _\alpha /\partial \partial _\mathcal{I}Q^\beta \). For this, as intermediate steps we compute

$$\begin{aligned} \frac{\partial P_B}{\partial \dot{Q}^A}= & {} \frac{\partial ^2\mathcal{L}}{\partial \dot{Q}^A\partial \dot{Q}^B} =W_{AB},\quad \frac{\partial \partial _k P_B}{\partial \partial _i\dot{Q}^A} =\delta _k^i\frac{\partial P_B}{\partial \dot{Q}^A} =W_{AB}\delta _k^i,\nonumber \\ \frac{\partial \partial _k P_B}{\partial \dot{Q}^A}= & {} \partial _k W_{AB}. \end{aligned}$$
(B16)

Then we have

$$\begin{aligned} \frac{\partial \alpha _\alpha }{\partial \partial _i\dot{Q}^A}= & {} -\frac{\partial \tilde{\Omega }_\alpha }{\partial \partial _iP_B}W_{AB}, \end{aligned}$$
(B17)
$$\begin{aligned} \frac{\partial \alpha _\alpha }{\partial \dot{Q}^A}= & {} -\frac{\partial \tilde{\Omega }_\alpha }{\partial \partial _iP_B}\partial _iW_{BA}-\frac{\partial \tilde{\Omega }_\alpha }{\partial P_B}W_{BA}. \end{aligned}$$
(B18)

Then by substituting Eqs. (B5B6)–(B7), (B9)–(B10), (B13B14)–(B15), (B17)–(B18) into Eq. (B3), we obtain

$$\begin{aligned} \frac{\partial \phi _\alpha }{\partial \dot{Q}^\beta }= & {} -\mathcal{C}_{0\beta \alpha } +\partial _i\mathcal{C}_{1\beta \alpha }^i -\partial _i\partial _j\mathcal{C}_{2\beta \alpha }^{ij},\nonumber \\ \frac{\partial \phi _\alpha }{\partial \partial _i\dot{Q}^\beta }= & {} \mathcal{C}_{1\beta \alpha }^i -2\partial _j\mathcal{C}_{2\beta \alpha }^{ij},\nonumber \\ \frac{\partial \phi _\alpha }{\partial \partial _i\partial _j\dot{Q}^\beta }= & {} -\mathcal{C}_{2\beta \alpha }^{ij}. \end{aligned}$$
(B19)

By using diffeomorphism invariance requirements, Eq. (65) is realised. This simplifies Eq. (B19). Further simplifications are possible. For this, let us note that using Eqs. (B3)–(B9) and diffeomorphism invariance requirements, one obtains

$$\begin{aligned} \frac{\partial \phi _\alpha }{\partial \dot{Q}^\beta } -\frac{\partial \phi _\beta }{\partial \dot{Q}^\alpha } +\partial _i\left( \frac{\partial \phi _\beta }{\partial \partial _i\dot{Q}^\alpha }\right)= & {} \frac{\partial \alpha _\alpha }{\partial Q^\beta } -\frac{\partial \alpha _\beta }{\partial Q^\alpha }\nonumber \\{} & {} +\partial _i\left( \frac{\partial \alpha _\beta }{\partial \partial _iQ^\alpha } +\frac{\partial \alpha _\beta }{\partial \dot{Q}^\alpha _i} +\frac{\partial \alpha _\alpha ^i}{\partial \dot{Q}^\beta }\right) . \end{aligned}$$
(B20)

Then by expressing \(\alpha _M\) in terms of Lagrangian and using diffeomorphism invariance and secondary-constraint enforcing relations, we obtain

$$\begin{aligned} \frac{\partial \phi _\alpha }{\partial \dot{Q}^\beta } -\frac{\partial \phi _\beta }{\partial \dot{Q}^\alpha } +\partial _i\left( \frac{\partial \phi _\beta }{\partial \partial _i\dot{Q}^\alpha }\right) =0, \end{aligned}$$
(B21)

which is equivalent to the phase space expression

$$\begin{aligned} \mathcal{C}_{0\alpha \beta } =\mathcal{C}_{0\beta \alpha }-\partial _i\mathcal{C}_{1\beta \alpha }^i. \end{aligned}$$
(B22)

Finally, this gives

$$\begin{aligned} \frac{\partial \phi _\alpha }{\partial \dot{Q}^\beta } = -\mathcal{C}_{0\alpha \beta },\quad \frac{\partial \phi _\alpha }{\partial \partial _i\dot{Q}^\beta } =-\mathcal{C}^{i}_{1\alpha \beta },\quad \frac{\partial \phi _\alpha }{\partial \partial _i\partial _j\dot{Q}^\beta } =0. \end{aligned}$$
(B23)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janaun, S., Vanichchapongjaroen, P. On sufficient conditions for degrees of freedom counting of multi-field generalised Proca theories. Gen Relativ Gravit 56, 5 (2024). https://doi.org/10.1007/s10714-023-03191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03191-8

Keywords

Navigation