Skip to main content
Log in

Androgenesis in soybean (Glycine max (L.) Merr.): a critical revisit

  • Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Glycine max (L.) Merr. (soybean) is a multi-purpose crop used for both animal and human feed. It is an economically and industrially important crop. It possesses many therapeutical and nutraceutical compounds. Therefore, soybean is referred to as ‘Gold from the soil’. Conventional breeding approaches are laborious and time-consuming. Thus, alternative biotechnological methods, such as in vitro micropropagation, regeneration, and transformation, could be advantageous. Despite the efforts made in the field of soybean micropropagation for haploidy and doubled haploidy, especially androgenesis, the success rate accounts for only approximately 2%. Androgenesis in soybean is lacking primarily due to its recalcitrant nature and differences in the development of microspores within a flower. Haploids and doubled haploids (DHs) have contributed immensely to crop improvement programs. In this review, soybean androgenesis history, production of haploids, and doubled haploids have been highlighted. The factors responsible for the androgenic responses have also been discussed. Furthermore, the review will be helpful in understanding the challenges in the standardization of protocol for the production of haploids and DHs in soybean, which will eventually assist breeding and crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

Data availability

The data is included in the manuscript.

Abbreviations

2, 4-D :

2, 4-Dichlorophenoxyacetic acid

AC :

Activated charcoal

ABA :

Abscisic acid

BA or BAP :

6-Benzyladenine or 6-Benzylaminopurine

BA or BAP :

Nitsch and Nitsch medium with reduced nitrogen medium (modification of Nitsch and Nitsch (1969) medium)

B5 :

Gamborg medium

DHs :

Doubled haploids

CRISPR/Cas9 :

Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9

°C :

Degree Celsius

d :

Days

hr :

Hours

IBA :

Indole-3-butyric acid

GA3 :

Gibberellic acid (A3) or gibberellin A3

Kin :

Kinetin

NaOCl :

Sodium hypochlorite

HgCl :

Mercury (I) chloride

LED :

Light-emitting diode

MS/MSO :

Murashige and Skoog medium

MSM6 :

Finer and McMullen medium

mg L 1 :

Milligram per litre

mm :

Millimetre

min :

Minutes

N6 :

Chu’s medium

NAA :

Naphthaleneacetic acid

NN :

Nitsch and Nitsch medium

Pic :

Picloram

PT4-15 (or PTA-15) :

Skinner and Liang medium

S :

Seconds

TDZ :

Thidiazuron

YS or  YSaa :

Yeung and Sussex medium or amino acids

References

  • Abdollahi MR, Rashidi S (2018) Production and conversion of haploid embryos in chickpea (Cicer arietinum L.) anther cultures using high 2, 4-D and silver nitrate containing media. Plant Cell Tiss Org Cult 133:39–49

    Article  CAS  Google Scholar 

  • Abdollahi MR, Seguí-Simarro JM (2021) Anther culture of chickpea (Cicer arietinum L.). In: Segui-Simarro JM (ed) Doubled haploid technology. methods in molecular biology, vol 2289. Humana, New York, pp 289–299

    Chapter  Google Scholar 

  • Agarwal DK, Billore SD, Sharma AN, Dupare BU, Srivastava SK (2013) Soybean: Introduction, improvement and utilisation in India – problems and prospects. Agric Res 2:293–300

    Article  CAS  Google Scholar 

  • Ahmadi T, Shabani L, Sabzalian MR (2020) LED light mediates phenolic accumulation and enhances antioxidant activity in Melissa officinalis L. under drought stress condition. Protoplasma 257:1231–1242

    Article  CAS  PubMed  Google Scholar 

  • Aslam MM, Karanja JK, Zhang Q, Lin H, Xia T, Akhtar K, Liu J, Miao R, Xu F, Xu W (2020) In vitro regeneration potential of white lupin (Lupinus albus) from cotyledonary nodes. Plants 9:318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batista DS, Felipe SHS, Silva TD, de Castro KM, Mamedes-Rodrigues TC, Miranda NA, Ríos-Ríos AM, Faria DV, Fortini EA, Chagas K, Torres-Silva G, Xavier A, Arencibia AD, Otoni WC (2018) Light quality in plant tissue culture: does it matter? In Vitro Cell Dev Biol - Plant 54:195–215

    Article  CAS  Google Scholar 

  • Bayliss KL, Wroth JM, Cowling WA (2004) Pro-embryos of Lupinus spp. produced from isolated microspore culture. Aust J Agric Res 55:589–593

    Article  Google Scholar 

  • Bermejo C, Gatti I, Cointry E (2016) In vitro embryo culture to shorten the breeding cycle in lentil (Lens culinaris Medik). Plant Cell Tiss Org Cult 127:585–590

    Article  CAS  Google Scholar 

  • Bhatia S (2015) Plant tissue culture. In: Bhatia S, Sharma K, Dahiya R, Bera T (eds) Modern applications of plant biotechnology in pharmaceutical sciences. Academic Press, Elsevier, US, pp 31–107

    Chapter  Google Scholar 

  • Bhojwani SS, Razdan MK (1986) Plant tissue culture: theory and practice, vol 3. Elsevier, New York

    Google Scholar 

  • Blakeslee AF, Belling J, Farnham ME, Bergner AD (1922) A haploid mutant in the jimson weed, “Datura stramonium”. Science 55:646–647

    Article  CAS  PubMed  ADS  Google Scholar 

  • Burk LG, Gerstel DU, Wernsman EA (1979) Maternal haploids of Nicotiana tabacum L. from seed. Science 206:585–585

    Article  CAS  PubMed  ADS  Google Scholar 

  • Cardoso MB, Bodanese-Zanettini MH, Mundstock EC, Kaltchuk-Santos E (2007) Evaluation of gelling agents on anther culture: response of two soybean cultivars. Braz Arch Biol Technol 50:933–939

    Article  Google Scholar 

  • Cardoso MB, Kaltchuk-Santos E, Mundstock ECD, Bodanese-Zanettini MH (2004) Initial segmentation patterns of microspores and pollen viability in soybean cultured anthers: indication of chromosome doubling. Braz Arch Biol Technol 47:703–712

    Article  Google Scholar 

  • Chu CC (1978) The N_6 medium and its applications to anther culture of cereal crops. In: Proceedings of symposium on plant tissue culture, May 25–30. Science Press, Peking, China, pp 43–50

  • Clarindo WR, De Carvalho CR, Alves BMG (2007) Mitotic evidence for the tetraploid nature of Glycine max provided by high quality karyograms. Plant Sys Evol 265:101–107

    Article  Google Scholar 

  • Croser JS, Lülsdorf MM, Davies PA, Clarke HJ, Bayliss KL, Mallikarjuna N, Siddique KHM (2006) Toward doubled haploid production in the Fabaceae: progress, constraints, and opportunities. Crit Rev Plant Sci 25:139–157

    Article  Google Scholar 

  • de Moraes AP, Bonadese-Zanettini MH, Callegari-Jacques SM, Kaltchuk-Santos E (2004) Effect of temperature shock on soybean microspore embryogenesis. Braz Arch Biol Technol 47:537–544

    Article  Google Scholar 

  • Deswal K (2018) Progress and opportunities in double haploid production in lentil (Lens culinaris Medik.), soybean (Glycine max L. Merr.) and chickpea (Cicer arietinum L.). J Pharmacogn Phytochem 7:3105–3109

    CAS  Google Scholar 

  • Dirks R, Van Dun K, De Snoo CB, Van Den Berg M, Lelivelt CL, Voermans W, Woudenberg L, De Wit JPC, Reinink K, Schut JW, Van Der Zeeuw E, Vogelaar A, Freymark G, Gutteling EW, Keppel MN, Drongelen PV, Kieny M, Ellul P, Touraev A, Ma H, Jong HD, Wijnker E (2009) Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnol J 7:837–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrie AM, Möllers C (2011) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tiss Org Cult 104:375–386

    Article  Google Scholar 

  • Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss Org Cult 104:301–309

    Article  Google Scholar 

  • Finer JJ, McMullen MD (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell Dev Biol - Plant 27:175–182

    Article  Google Scholar 

  • Friederich J (2020) Doubled haploid breeding methods in maize and soybean (thesis). Digital repository. Iowa State University

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Garda M (2018) Soybean androgenesis. PhD dissertation, Arkansas State University, AR, US. Retrieved from https://www.proquest.com/openview/a95b564d9c6abb96e01f8df3da5a71b2/1?pq-origsite=gscholar&cbl=18750

  • Garda M, Hale B, Rao N, Lowe M, Bright M, Goodling S, Phillips GC (2020) Soybean androgenesis I: Identification of pyramidal stressors in anther cultures that sustain cell divisions and putative embryo formation from isolated microspore cultures. In Vitro Cell Dev Biol - Plant 56:415–429

    Article  CAS  Google Scholar 

  • Gatti I, Guindón F, Bermejo C, Espósito A, Cointry E (2016) In vitro tissue culture in breeding programs of leguminous pulses: use and current status. Plant Cell Tiss Org Cult 127:543–559

    Article  CAS  Google Scholar 

  • Germanà MA (2011) Anther culture for haploid and doubled haploid production. Plant Cell Tiss Org Cult 104:283–300

    Article  Google Scholar 

  • Gnasekaran P, Rahman ZA, Chew BL, Appalasamy S, Mariappan V, Subramaniam S (2021) Development of micropropagation system of Zingiber officinale var. rubrum Theilade using different spectrum light-emitting diode (LED) irradiation. Ind Crops Prod 170:113748

    Article  CAS  Google Scholar 

  • Grewal RK, Lulsdorf M, Croser J, Ochatt S, Vandenberg A, Warkentin TD (2009) Doubled-haploid production in chickpea (Cicer arietinum L.): role of stress treatments. Plant Cell Rep 28:1289–1299

    Article  CAS  PubMed  Google Scholar 

  • Grishchenko OV, Subbotin EP, Gafitskaya IV, Vereshchagina YV, Burkovskaya EV, Khrolenko YA, Grigorchuk VP, Nakonechnaya OV, Bulgakov VP, Kulchin YN (2022) Growth of micropropagated Solanum tuberosum L. plantlets under artificial solar spectrum and different mono-and polychromatic LED lights. Horticult Plant J 8:205–214

    Article  CAS  Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anther of Datura. Nature 204:497

    Article  ADS  Google Scholar 

  • Haccius B, Bhandari NN (1975) Delayed histogen differentiation as a common primitive character in all types of non-zygotic embryos. Phytomorphology 25:91–94

    Google Scholar 

  • Hai NH, Lal SK, Singh SK, TalukdarVinod A (2016) Anther culture of Glycine max (Merr.): effect of media on callus induction and organogenesis. Ind J Genet 76:319–325

    Article  CAS  Google Scholar 

  • Hale B, Ferrie AM, Chellamma S, Samuel JP, Phillips GC (2022) Androgenesis-based doubled haploidy: past, present, and future perspectives. Front Plant Sci 12:751230. https://doi.org/10.3389/fpls.2021.751230

  • Hale B, Lor P, Chellamma S, Samuel JP, Phillips GC (2021a) Gynoecium pubescence in soybean: a prevalent false-positive during in vitro androgenesis. Plant Cell Tiss Org Cult 146:417–421

    Article  CAS  Google Scholar 

  • Hale B, Phipps C, Kelley C, Phillips GC (2019) Evaluation of soybean androgenesis by isolated microspore culture. In: Ross J (ed) Arkansas Soybean Research Studies 2018. University of Arkansas, Fayetteville, US, pp 31–37

    Google Scholar 

  • Hale B, Phipps C, Rao N, Kelley C, Phillips GC (2021b) Soybean androgenesis II: Non-gametophytic morphologies in isolated microspore culture. In Vitro Cell Dev Biol - Plant 57:356–364

    Article  CAS  Google Scholar 

  • Hale B, Phipps C, Rao N, Phillips GC (2020a) Advances in soybean microspore culture. In: Ross J (ed) Arkansas soybean research studies 2019. Arkansas Agricultural Experiment Station Research Series, Fayetteville, pp 74–80. Retrieved from https://scholarworks.uark.edu/aaesser/166

  • Hale B, Phipps C, Rao N, Wijeratne A, Phillips GC (2020b) Differential expression profiling reveals stress-induced cell fate divergence in soybean microspores. Plants 9:1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale BM (2020) Induction and characterization of microspore embryogenesis in soybean (Glycine max [L.] Merrill). PhD dissertation, Arkansas State University, AR, US. Retrieved from https://www.proquest.com/openview/bb6ea909465affb5078c1064f5644a25/1?pqorigsite=gscholar&cbl=18750&diss=y

  • Hassan SM (2013) Soybean, nutrition and health. In: El-Shemy HA (ed) Soybean-bio-active compounds. Intech, Croatia, pp 453–473

  • Hazarika BN, Teixeira da Silva JA, Talukdar A (2006) Effective acclimatization of in vitro cultured plants: methods, physiology and genetics. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology, vol 2. Global Science Books, London, pp 427–438

  • He J, Qin L, Chong EL, Choong TW, Lee SK (2017) Plant growth and photosynthetic characteristics of Mesembryanthemum crystallinum grown aeroponically under different blue-and red-LEDs. Front Plant Sci 8:361

    Article  PubMed  PubMed Central  Google Scholar 

  • Heberle-Bors E (1985) In vitro haploid formation from pollen: a critical review. Theor Appl Genet 71:361–374

    Article  CAS  PubMed  Google Scholar 

  • Heberle-Bors E (1989) Isolated pollen culture in tobacco: plant reproductive development in a nutshell. Sexual Plant Reprod 2:1–10

    Article  Google Scholar 

  • Hu CY, Yin GC, Helena M, Zanettini B (1996) Haploid of soybean. In: Jain SM, Sopory SK, Veilleux RE (eds) Vitro haploid production in higher plants, current plant science and biotechnology in agriculture, vol 25. Springer, Dordrecht, pp 377–395

    Google Scholar 

  • Hymowitz T (2004) Speciation and cytogenetics. In: Shibles RM, Harper JE, Wilson RF, Shoemaker RC (eds) Soybeans: improvement, production, and uses, 3rd edn. Agronomy monograph 16. American Society of Agronomy Inc., Crop Science Society of America Inc., Soil Science Society of America Inc., Madicon, pp 97–136

  • Isanga J, Zhang GN (2008) Soybean bioactive components and their implications to health—a review. Food Rev Int 24:252–276

    Article  CAS  Google Scholar 

  • Ivers DR, Palmer RG, Fehr WR (1974) Anther culture in soybeans. Crop Sci 14:891–893

    Article  Google Scholar 

  • Jian YY, Liu DP, Luo XM, Zhao GL (1986) Studies on induction of pollen plants in Glycine max (L.) Merr. Chiang-sunungyehhseuhpao/J. Agri Sci 2:26–30

  • Jumrani K, Bhatia VS, Pandey GP (2018) Screening soybean genotypes for high temperature tolerance by in vitro pollen germination, pollen tube length, reproductive efficiency and seed yield. Ind J Plant Physiol 23:77–90

    Article  CAS  Google Scholar 

  • Kadlec M, Suchomelova J, Smirnov VA, Nikolajevna SL (1991) Anther culture in soybean. Soybean Genet Newsl 18:121–124

    Google Scholar 

  • Kaltchuk-Santos E, Bodanese-Zanettini MH, Mundstock E (1993) Pollen dimorphism in soybean. Protoplasma 174:74–78

    Article  Google Scholar 

  • Kaltchuk-Santos E, Mariath JE, Mundstock E, Hu C, Bodanese-Zanettini MH (1997) Cytological analysis of early microspore divisions and embryo formation in cultured soybean anthers. Plant Cell Tiss Org Cult 49:107–115

    Article  Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    Article  CAS  PubMed  ADS  Google Scholar 

  • Khan S, Latif A, Ahmad SQ, Ahmad F, Ghaffar M (2010) Double haploid technique: In soybean and other species. Int J Appl 5:649–655

    Google Scholar 

  • Kiss E, Heszky L, Gyulai G (1991) Progress and problems of biotechnology in the soybean (Glycine max (L.) Merr.). Acta Agron Hung 40:217–236

    CAS  Google Scholar 

  • Lai CS, Kho YH, Chew BL, Raja PB, Subramaniam S (2022) Organogenesis of Cucumis metuliferus plantlets under the effects of LEDs and silver nanoparticles. South Afr J Bot 148:78–87

    Article  CAS  Google Scholar 

  • Lauxen MDS, Kaltchuk-Santos E, Hu CY, Callegari-Jacques SM, Bodanese-Zanettini MH (2003) Association between floral bud size and developmental stage in soybean microspores. Braz Arch Biol Technol 46:515–520

    Article  Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105:427–434

    Article  Google Scholar 

  • Lim CH, Guan TS, Chan Hong E, Lit Chow Y, Lynn CB, Subramaniam S (2020) Effect of different LED lights spectrum on the in vitro germination of gac seed '(Momordica cochinchinensis)’. Aus J Crop Sci 14:1715–1722

    Article  CAS  Google Scholar 

  • Liu DP, Zhao GL (1986) Callus attained from soybean pollen culture in vitro. Soybean Sci (in Chinese) 1:17

    Google Scholar 

  • Liu Q, Yang F, Zhang J, Liu H, Rahman S, Islam S, Ma W, She M (2021) Application of CRISPR/Cas9 in crop quality improvement. Int J Mol Sci 22:4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobiuc A, Vasilache V, Pintilie O, Stoleru T, Burducea M, Oroian M, Zamfirache MM (2017) Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens. Molecules 22:2111

    Article  PubMed  PubMed Central  Google Scholar 

  • Lulsdorf M, Yuan HY, Slater S, Vandenberg A, Han X, Zaharia LI (2012) Androgenesis-inducing stress treatments change phytohormone levels in anthers of three legume species (Fabaceae). Plant Cell Rep 31:1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Lulsdorf MM, Croser JS, Ochatt S (2011) Androgenesis and doubled-haploids production in food legumes. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CAB International, Wallingford, pp 159–177

    Chapter  Google Scholar 

  • Maranna S, Nataraj V, Kumawat G, Chandra S, Rajesh V, Ramteke R, Patel RM, Ratnaparkhe MB, Husain SM, Gupta S, Khandekar N (2021) Breeding for higher yield, early maturity, wider adaptability and waterlogging tolerance in soybean (Glycine max L.): A case study. Sci Rep 11:22853

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Medic J, Atkinson C, Hurburgh CR (2014) Current knowledge in soybean composition. J Am Oil Chem Soc 91:363–384

    Article  CAS  Google Scholar 

  • Miller CO (1963) Kinetin and kinetin-like compounds. In: Linskens HF, Paech K, Sanwal BD, Tracey MV (eds) Modern methods of plant analysis, vol 6. Springer, Berlin, Heidelberg, pp 194–202

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niazian M, Shariatpanahi ME (2020) In vitro-based doubled haploid production: recent improvements. Euphytica 216:1–21

    Article  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  PubMed  ADS  Google Scholar 

  • Ochatt S, Pech C, Grewal R, Conreux C, Lulsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 166:1314–1328

    Article  CAS  PubMed  Google Scholar 

  • Ochatt S, Sangwan R, Marget P, Ndong YA, Rancillac M, Perney P, Röbbelen G (2002) New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breed 121:436–440. https://doi.org/10.1046/j.1439-0523.2002.746803.x

    Article  Google Scholar 

  • Ochatt SJ, Sangwan RS (2010) In vitro flowering and seed set: acceleration of generation cycles. In: Davey MR, Anthony P (eds) Plant cell culture: essential methods. Wiley-Blackwell, John Wiley and Sons, Chichester, pp 97–110

  • O’Keefe SF, Bianchi L, Sharman J (2015) Soybean nutrition. SM J Nutr Metab 1:1006

    Google Scholar 

  • Panchangam SS, Mallikarjuna N, Gaur PM (2014) Androgenesis in chickpea: anther culture and expressed sequence tags derived annotation. Ind J Exp Biol 52:181–188

    Google Scholar 

  • Pang WQ, Tan ST, Mad’Atari MF, Yoong ICK, Subramaniam S (2023) Establishment of an efficient micropropagation protocol for Cameron Highlands White Strawberry (Fragaria x ananassa) using light emitting diodes (LEDs) system. South Afr J Bot 157:189–200

    Article  CAS  Google Scholar 

  • Parab AR, Han KY, Chew BL, Subramaniam S (2021) Morphogenetic and physiological effects of LED spectra on the apical buds of Ficus carica var. Black Jack Scient Rep 11:1–11

    Google Scholar 

  • Pelletier G, Ilami M (1972) In vitro androgenetic factors in Nicotiana tabacum. Z Pflanzenphysiol 68:97–114

    Article  Google Scholar 

  • Pratap A, Gupta SK (2007) Advances in doubled haploid technology of oilseed rape. Ind J Crop Sci 2:267–271

    Google Scholar 

  • Pratap A, Gupta SK, Kumar J, Mehandi S, Pandey VR (2016) Soybean. In: Gupta, SK (ed) Breeding Oilseed Crops for Sustainable Production: Opportunities and constraints, 293–315. Elsevier. https://doi.org/10.1016/b978-0-12-801309-0.00012-4

  • Pratap A, Prajapati U, Singh CM, Gupta S, Rathore M, Malviya N, Tomar R, Gupta AK, Tripathi S, Singh NP (2018) Potential, constraints and applications of in vitro methods in improving grain legumes. Plant Breed 137:235–249

    Article  Google Scholar 

  • Raghavan V (1978) Origin and development of pollen embryoids and pollen calluses in cultured anther segments of Hyoscyamus niger (henbane). Am J Bot 65:884–1002

    Article  Google Scholar 

  • Rajendran A, Lal SK (2020) Assessing the need of pre-germination anaerobic stress-tolerant varieties in Indian Soybean (Glycine max (L.) Merrill). Nat Acad Sci Lett. https://doi.org/10.1007/s40009-020-00937-9

  • Ramlal A, Nautiyal A, Baweja P, Kumar V, Mehta S, Mahto RK, Tripathi S, Shanmugam A, Mallikarujun BP, Raman P, Lal SK, Raju D, Rajendran A (2022a) Angiotensin-converting enzyme (ACE) inhibitory peptides and isoflavonoids from soybean (Glycine max (L.) Merr.), Front Nutr. https://doi.org/10.3389/fnut.2022.1068388

  • Ramlal A, Bhat I, Nautiyal A, Baweja P, Mehta, S., Kumar V, Tripathi S, Mahto RK, Saini M, Mallikarjun BP, Saluja S, Lal SK, Subramaniam S, Fawzy IM, Rajendran A (2023a) In silico analysis of angiotensin-converting enzyme (ACE) inhibitory compounds obtained from soybean (Glycine max (L.) Merr.). Front Physiol. https://doi.org/10.3389/fphys.2023.1172684

  • Ramlal A, Dey N, Sharma U, Rajendran A (2022c) In-silico studies to reveal the potential inhibitory capacity of soy isoflavonoids against angiotensin-converting enzyme. In: Coreference Proceedings: Chopra H, Ghuriani V, Arora PM, Babbar S, Baweja P (eds) Sustainable future for humanity: the new learning curve. Imperial Publications, Mumbai, pp 155–167

  • Ramlal A, Nautiyal A, Baweja P, Mahto RK, Mehta S, Mallikarjun BP, Vijayan R, Saluja S, Kumar V, Dhiman SK, Lal SK, Raju D, Rajendran A (2022b) Harnessing heterosis and male sterility in soybean (Glycine max (L.) Merr.): A critical revisit. Front Plant Sci. https://doi.org/10.3389/fpls.2022.981768/

  • Ramlal A, Sharma D, Lal SK, Raju D, Shivam, Rajendran A (2023b) First report of ovary-derived calluses induction in soybean (Glycine max (L.) Merr.). Plant Cell Tiss Org Cult. https://doi.org/10.1007/s11240-023-02482-x

  • Ribalta FM, Croser JS, Erskine W, Finnegan PM, Lulsdorf MM, Ochatt SJ (2014) Antigibberellin-induced reduction of internode length favors in vitro flowering and seed-set in different pea genotypes. Biol Plant 58:39–46

    Article  CAS  Google Scholar 

  • Rizzo G, Baroni L (2018) Soy, soy foods and their role in vegetarian diets. Nutrients 10:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues LR, Forte BDC, Bodanese-Zanettini MH (2006) Isolation and culture of soybean (Glycine max L. Merrill) microspores and pollen grains. Braz Arch Biol Technol 49:537–545

    Article  Google Scholar 

  • Rodrigues LR, Forte BDC, Oliveira JMS, Mariath JEA, Bodanese-Zanettini MH (2004a) Effects of light conditions and 2, 4-D concentration in soybean anther culture. Plant Growth Regul 44:125–131

    Article  CAS  Google Scholar 

  • Rodrigues LR, Oliveira JMS, Mariath JEA, Bodanese-Zanettini MH (2005b) Histology of embryogenic responses in soybean anther culture. Plant Cell Tiss Org Cult 80:129–137

    Article  Google Scholar 

  • Rodrigues LR, Oliveira JMS, Mariath JEA, Iranco LB, Bodanese-Zanettini MH (2005a) Anther culture and cold treatment of floral buds increased symmetrical and extranuclei frequencies in soybean pollen grains. Plant Cell Tiss Org Cult 8:101–104

    Article  Google Scholar 

  • Rodrigues LR, Terra TDF, Bered F, Bodanese-Zanettini MH (2004b) Origin of embryo-like structures in soybean anther culture investigated using SSR marker. Plant Cell Tiss Org Cult 77:287–289

    Article  CAS  Google Scholar 

  • Rudolf-Pilih K, Petkovšek M, Jakše J, Štajner N, Murovec J, Bohanec B (2019) Proposal of a new hybrid breeding method based on genotyping, inter-pollination, phenotyping and paternity testing of selected elite F1 hybrids. Front Plant Sci 10:01111. https://doi.org/10.3389/fpls.2019.01111

    Article  Google Scholar 

  • Seeja G, Sreekumar S (2020) Doubled haploids in genetic improvement: a review. Int J Rec Sci Res 11:36941–36949

    Google Scholar 

  • Seguí-Simarro JM (2010) Androgenesis revisited. Botan Rev 76:377–404

    Article  Google Scholar 

  • Severin AJ, Cannon SB, Graham MM, Grant D, Shoemaker RC (2011) Changes in twelve homoeologous genomic regions in soybean following three rounds of polyploidy. Plant Cell 23:3129–3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivakumar M, Gireesh C, Talukdar A (2016) Efficiency and utility of pollination without emasculation (PWE) method in intra and inter specific hybridization in soybean. Ind J Genet 76(1):98–100

  • Shukla MR, Singh AS, Piunno K, Saxena PK, Jones AMP (2017) Application of 3D printing to prototype and develop novel plant tissue culture systems. Plant Meth 13:1–10

    Article  Google Scholar 

  • Singh D, Swapnil AS, Kumar M (2020) Androgenesis: A valuable technique to shorten the breeding cycle. Food Sci Rep 1:18–20

    Google Scholar 

  • Singh RJ, Kim HH, Hymowitz T (2001) Distribution of rDNA loci in the genus Glycine Willd. Theor Appl Genet 103:212–218

    Article  CAS  Google Scholar 

  • Skinner DZ, Liang GH (1996) Haploidy in alfalfa. In: Jain SM, Sopory SK, Veilleux RE (eds.) In vitro Haploid Production in Higher Plants. Current Plant Science and Biotechnology in Agriculture. 25, pp. 365–375, Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1858-5_19

  • Soybean annual report (2021) ICAR-Indian Institute of Soybean Research, Indore, Madhya Pradesh, India. Retrieved from https://iisrindore.icar.gov.in/pdfdoc/AR2021.pdf

  • Swallah MS, Yang X, Li J, Korese JK, Wang S, Fan H, Yu H, Huang Q (2023) The pros and cons of soybean bioactive compounds: An overview. Food Rev Int 39(8):5104–5131

    Article  CAS  Google Scholar 

  • Talukdar A, Shivakumar M (2012) Pollination without emasculation: an efficient method of hybridization in soybean (Glycine max (L.) Merrill). Curr Sci 103(6):628–630

  • Tang WT, Ling TS, Chang CS (1973) Effects of kinetin and auxin on callus formation in anther tissue cultures of soya bean. J Agr Association China (Chung-huaNung-hsueh Hui Pao) 83:1–7

    CAS  Google Scholar 

  • Tiwari S, Shanker P, Tripathi M (2004) Effects of genotype and culture medium on in vitro androgenesis in soybean (Glycine max Merr.). Ind J Biotechnol 3:441–444

    CAS  Google Scholar 

  • Verma K, Saini R, Rani A (2014) Recent advances in the regeneration and genetic transformation of soybean. J Innov Biol 1:015–026

    Google Scholar 

  • Walling JG, Shoemaker R, Young N, Mudge J, Jackson S (2006) Chromosome-level homeology in paleopolyploid soybean (Glycine max) revealed through integration of genetic and chromosome maps. Genetics 172:1893–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijnker E, van Dun K, de Snoo CB, Lelivelt CL, Keurentjes JJ, Naharudin NS, Ravi M, Chan SWL, de Jong H, Dirks R (2012) Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant. Nat Genet 44:467–470

    Article  CAS  PubMed  Google Scholar 

  • Winson KWS, Chew BL, Sathasivam K, Subramaniam S (2021) Effect of amino acid supplementation, elicitation and LEDs on Hylocereus costaricensis callus culture for the enhancement of betalain pigments. Scientia Horticult 289:110459

    Article  CAS  Google Scholar 

  • Xu B, Wu R, Tang F, Gao C, Gao X, Shi F (2021) Haploid culture and double haploid induction in Medicago sativa L. cv. XinJiangDaYe. Legume Res - Int J 44:275–280

    Google Scholar 

  • Yao S, Croughan SS, Zhao G (1996) Pollen and anther culture of soybean. In: 6th Biennial conference of molecular and cellular biology of soybean, Columbia, p 37

  • Ye XG, Fu YQ, Wang LZ (1994) Study on several problems of soybean anther culture. Soybean Sci 13:193–199

    Google Scholar 

  • Yeung EC, Sussex IM (1979) Embryogeny of Phaseolus coccineus: the suspensor and the growth of the embryo-proper in vitro. Z Pflanzenphysiol 91:423–433

    Article  CAS  Google Scholar 

  • Yin GC (1981) Study on pollen culture of soybean. Heilongjiang Agr Sci 1:12–14

    Google Scholar 

  • Yin GC, Li XZ, Xu Z, Chen L, Zhu ZY, Bi FY (1980) A study of anther culture of Glycine max. Kexue Tongboa (English edn.) 25:976 (Abstr.)

  • Yin GC, Zhu ZY, Xu Z, Chen L, Li XZ, Bi FY (1982) Studies on induction of pollen plant and their androgenesis in Glycine max (L.) Merr. Soybean Sci 1:69–76 (in Chinese with English abstract)

    Google Scholar 

  • Ying Q, Kong Y, Jones-Baumgardt C, Zheng Y (2020) Responses of yield and appearance quality of four Brassicaceae microgreens to varied blue light proportion in red and blue light-emitting diodes lighting. Sci Horticult 259:108857

    Article  Google Scholar 

  • Zhao G, Liu Y, Yin A, Li J (1998) Germination of embryo in soybean anther culture. Chin Sci Bull 43:1991–1995

    Article  CAS  Google Scholar 

  • Zhuang XJ, Hu CY, Chen Y, Yin GC (1991) Embroids from soybean anther culture. Soybean Genet Newsl 18:265

    Google Scholar 

  • Zulkarnain ZZZ (2014) The effect of different levels and sources of auxin and cytokinin to callus formation on soybean anther culture. J Agroteknologi Tropika 3:58–67

    Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

SKL and AmR conceptualized the idea. AyR resources, data curation, and writing original draft preparation; S and DS assisted in resources and data curation; SM, AN, PB, SKL, RV, DR, SS, and AmR review and editing. All authors have read and agreed to the submitted version of the manuscript.

Corresponding author

Correspondence to Ambika Rajendran.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publishing

Not applicable.

Competing Interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramlal, A., Mehta, S., Nautiyal, A. et al. Androgenesis in soybean (Glycine max (L.) Merr.): a critical revisit. In Vitro Cell.Dev.Biol.-Plant 60, 1–15 (2024). https://doi.org/10.1007/s11627-023-10402-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-023-10402-z

Keywords

Navigation