Skip to main content
Log in

Ionization of hydrogen atom driven by ultrashort intense laser pulses: study in momentum space of phase-dependent effects

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

To bypass the difficulty of solving the one-electron time-dependent Schrödinger equation in momentum space with the interacting nonlocal Coulomb potential, we have recently formulated an alternative accurate and efficient ab initio treatment (Ongonwou et al., Ann Phys 375:471, 2016; Ekogo et al., Phys Scr 97:115402, 2022), which relies on the expansion of the atomic wave function and the interacting nonlocal Coulomb potential on a discrete basis set of Coulomb Sturmian functions in momentum space. To further illustrate the validation and credibility of our proposed theoretical and numerical approaches, we study the above-threshold ionization of the hydrogen atom exposed to ultrashort infrared, ultraviolet, and low-and-high-frequency laser pulses. The energy spectra, momentum, angular distributions of the photoelectrons, and bound-state populations at the end of the laser pulse have been numerically evaluated, analyzed, and compared against predictions of other well-known time-dependent calculations in the literature. They are obtained either by using the ionized wave function or by projecting the total electron wave packets at the end of the laser pulse onto the continuum states constructed using the incoming Coulomb wave function. We explore the physical observables’ dependence on the carrier-envelope phase of the laser pulses. Our theoretical model captures the left–right dependence and breaks backward–forward symmetry in the emitted photoelectron momentum and angular distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I P Christov, M M Murnane and H C Kapteyn Phys. Rev. Lett. 78 1251 (1997)

    ADS  Google Scholar 

  2. C A Haworth, L E Chipperfield, J S Robinson, P L Knight, J P Marangos and J W G Tisch Nat. Phys. 3 52 (2006)

    Google Scholar 

  3. M B Gaarde, Ph Antoine, A L'Huillier, K J Schafer and K C Kulander Phys. Rev. A. 57 4553 (1998)

    ADS  Google Scholar 

  4. J Tate, T Auguste, H G Muller, P Salières, P Agostini and L F DiMauro Phys. Rev. Lett. 98 013901 (2007)

    ADS  Google Scholar 

  5. M F Ciappina, J Biegert, R Quidant and M Lewenstein Phys. Rev. A 85 033828 (2012)

    ADS  Google Scholar 

  6. T Tabe, N Ono, X M Tong and N Toshima Phys. Rev. A 84 023409 (2011)

    ADS  Google Scholar 

  7. K C Kulander Phys. Rev. A 35 445 (1987)

  8. H G Muller Phys. Rev. A 60 1341 (1999)

  9. D Bauer Phys. Rev. Lett. 94 113001 (2005)

  10. C I Blaga, F Catoire, P Colosimo, G G Paulus, H G Muller, P Agostini and L F DiMauro Nat. Phys. 5 335 (2009)

    Google Scholar 

  11. M Ruf, H Bauke and C H Keitel J. Comput. Phys. 228 9092 (2009)

    ADS  MathSciNet  Google Scholar 

  12. P B Corkum and F Krausz Nat. Phys. 3 381 (2007)

    Google Scholar 

  13. R Kienberger, E Goulielmakis, M Uiberacker, A Baltuška, V Yakovlev, F Bammer, A Scrinzi, T Westerwalbesloh, U Kleineberg, U Heinzmann, M Drescher and F Krausz Nature 427 817 (2004)

  14. H J Worner, J B Bertrand, D V Kartashov, P B Corkum and D M Villeneuve Nature 466 604 (2010)

  15. A Borot, A Malvache, X Chen, A Jullien, J Geindre, P Audebert, G Mourou, F Quéré and R Lopez-Martens Nat. Phys. 8 416 (2012)

    Google Scholar 

  16. A Baltuška et al Nature 421 611 (2003)

    ADS  Google Scholar 

  17. I J Sola et al Nat. Phys. 2 319 (2006)

    ADS  Google Scholar 

  18. P Agostini and L F DiMauro Rep. Prog. Phys. 67 813 (2004)

    ADS  Google Scholar 

  19. A Scrinzi, M Yu Ivanov, R Kienberger and D M Villeneuve J. Phys. B: At. Mol. Opt. Phys. 39 R1 (2006)

    Google Scholar 

  20. T Brabec and F Krausz Rev. Mod. Phys. 72 545 (2000)

    ADS  Google Scholar 

  21. M Protopapas, C H Keitel and P L Knight Rep. Prog. Phys. 60 389 (1997)

    ADS  Google Scholar 

  22. T Rathje, N G Johnson, M Möller, F Süßmann, D Adolph, R Kienberger, G G Paulus and A M Sayler J. Phys. B 45 074003 (2012)

    ADS  Google Scholar 

  23. G G Paulus, F Grasbon, H Walther, P Villoresi, M Nisoli, S Stagira, E Priori and S D Silvestri Nature (London) 414 182 (2001)

  24. W C Wallace et al New J. Phys. 15 033002 (2013)

    ADS  Google Scholar 

  25. F Krausz and M Ivanov Rev. Mod. Phys. 81 163 (2009)

    ADS  Google Scholar 

  26. A Ankudinov, S Zabinsky and J Rehr Comput. Phys. Commun. 98 359 (1996)

    ADS  Google Scholar 

  27. D Bauer and P Koval Comput. Phys. Commun. 174 396 (2006)

    ADS  Google Scholar 

  28. K C Kulander, K J Schafer and J L Krause Atoms in Intense Laser Fields (Academic) (1992)

  29. A M Sayler et al Opt. Lett. 40 3137 (2015)

    ADS  Google Scholar 

  30. X Liu, H Rottke, E Eremina, W Sandner, E Goulielmakis, K O Keeffe, M Lezius, F Krausz, F Lindner, M G Schätzel, G G Paulus and H Walther Phys. Rev. Lett. 93 263001 (2004)

    ADS  Google Scholar 

  31. D Ray, Z Chen, S De, W Cao, I V Litvinyuk, A T Le, C D Lin, M F Kling and C L Cocke Phys. Rev. A 83 013410 (2011)

    ADS  Google Scholar 

  32. Z Chen, A T Le, T Morishita and C D Lin Phys. Rev. A 79 033409 (2009)

    ADS  Google Scholar 

  33. K Burnett, V C Reed and P L Knight J. Phys. B 26 561 (1993)

    ADS  Google Scholar 

  34. E Cormier, H Bachau and J Zhang J. Phys. B: At. Mol. Phys. 26 4449 (1993)

    ADS  Google Scholar 

  35. E Huens, B Piraux, A Bugacov and M Gajda Phys. Rev. A 55 2132 (1997)

    ADS  Google Scholar 

  36. H Rottke, X Liu, E Ermina, M Sandner, E Goulielmakis, K O Keeffe, M Lezius, F Krausz, F Lindner, M G Schätzel, G G Paulus and H Walther J. Mod. Opt. 53 149 (2006)

    ADS  Google Scholar 

  37. H Li, J Chen, H Jiang, J Liu, P Fu, Q Gong, Z.-C Yan and B Wang Opt. Express. 16 20562 (2008)

  38. S L Haan, L Breen, A Karim and J H Eberly Phys. Rev. Lett. 97 103008 (2006)

    ADS  Google Scholar 

  39. D A Telnov and S -I Chu Phys. Rev. A 79 043421 (2009)

    ADS  Google Scholar 

  40. S Chen, X Gao, J Li, A Becker and A Jaroń-Becker Phys. Rev. A 86 013410 (2012)

    ADS  Google Scholar 

  41. N Suárez, A Chacón, M F Ciappina, J Biegert and M Lewenstein Phys. Rev. A 92 063421 (2015)

    ADS  Google Scholar 

  42. M V Ammosov, N B Delone and V P Krainov Sov. Phys. JETP 64 1191 (1986)

    ADS  Google Scholar 

  43. K Amini et al Rep. Prog. Phys. 82 116001 (2019)

    ADS  Google Scholar 

  44. L Tao and A Scrinzi New J. Phys. 14 013021 (2012)

    ADS  Google Scholar 

  45. A Scrinzi New J. Phys. 14 085008 (2012)

    ADS  Google Scholar 

  46. M Jain and N Tzoar Phys. Rev. A 18 538 (1978)

    ADS  Google Scholar 

  47. G Yao and S -I Chu J. Phys. B 25 363 (1992)

    ADS  Google Scholar 

  48. T F Jiang Comput. Phys. Commun. 178 571 (2008)

    ADS  Google Scholar 

  49. S -Da Jheng and T F Jiang Phys. Scr. 97 045402 (2022)

    ADS  Google Scholar 

  50. N I Shvetsov-Shilovski and E Räsanen J. Comput. Phys. 279 174 (2014)

    ADS  Google Scholar 

  51. A de Bohan PhD Thesis (Université Catholique de Louvain, Belgium) (2001)

  52. A de Bohan, B Piraux, L Ponce, R Taïeb, V Véniard and A Maquet Phys. Rev. Lett. 89 113002 (2002)

    ADS  Google Scholar 

  53. Z Zhou and S -I Chu Phys. Rev. A 71 022513 (2005)

    ADS  Google Scholar 

  54. Y RaeKwon and F Tabakin Phys. Rev. C 18 932 (1978)

    ADS  Google Scholar 

  55. R H Landau Phys. Rev. C 27 2191 (1983)

    ADS  Google Scholar 

  56. G Yao and S -I Chu Chem. Phys. Lett. 204 381 (1993)

    ADS  Google Scholar 

  57. Z Zhou and S -I Chu Phys. Rev. A 83 013405 (2011)

    ADS  Google Scholar 

  58. W Becker, S Long and J K McIver Phys. Rev. A 50 1540 (1994)

    ADS  Google Scholar 

  59. N Suárez, A Chacón, M F Ciappina, B Wolter, J Biegert and M Lewenstein Phys. Rev. A 94 043423 (2016)

    ADS  Google Scholar 

  60. N Suárez, A Chacón, J A Pérez-Hernández, J Biegert, M Lewenstein and M F Ciappina Phys. Rev. A 95 033415 (2017)

    ADS  Google Scholar 

  61. N Suárez, A Chacón, E Pisanty, L Ortmann, A S Landsman, A Picón, J Biegert, M Lewenstein and M F Ciappina Phys. Rev. A 97 033415 (2018)

    ADS  Google Scholar 

  62. F Ongonwou, H M Tetchou Nganso, T B Ekogo and M G Kwato Njock Ann. Phys. 375 471 (2016)

  63. T B Ekogo, H M Tetchou Nganso, Abdouraman, C Wafo Soh and M G Kwato Njock Phys. Scr. 97 115402 (2022)

    ADS  Google Scholar 

  64. A Hamido, J Eiglsperger, J Madroñero, F Mota-Furtado, P F O’Mahony, A L Frapiccini and B Piraux Phys. Rev. A 84 013422 (2011)

    ADS  Google Scholar 

  65. A Hamido Ph.D. Thesis (Université catholique de Louvain, Belgium) (2014) available at http://hdl.handle.net/2078.1/153485

  66. H M Tetchou Nganso Ph.D. Thesis (Université Catholique de Louvain, Belgium) (2010)

  67. H M Tetchou Nganso, Yu V Popov, B Piraux, J Madron˜ero and M G Kwato Njock Phys. Rev. A 83 013401 (2011)

    ADS  Google Scholar 

  68. H M Tetchou Nganso, A Hamido, M G Kwato Njock, Yu V Popov and B Piraux Phys. Rev. A 87 013420 (2013)

    ADS  Google Scholar 

  69. H M Tetchou Nganso, S Giraud, B Piraux, Yu V Popov and M G Kwato Njock J. Elect. Spect. Rel. Phen. 161 178 (2007)

    Google Scholar 

  70. E Cormier and P J Lambropoulos J. Phys. B 29 1667 (1996)

    ADS  Google Scholar 

  71. I S Gradshteyn, I M Ryzhik Table of Integrals, Series and Products (Academic Press, New York) (1965)

    Google Scholar 

  72. D A Varshalovich, A N Moskalev and V K Khersonskii Quantum Theory of Angular Momentum (World Scientific, Singapore) (1988)

    Google Scholar 

  73. D B Milošević, G G Paulus and W Becker Laser Phys. 13 948 (2003)

    Google Scholar 

  74. D A Telnov and S -I. Chu Phys. Rev. A 100 043423 (2019)

    ADS  Google Scholar 

  75. M Nurhuda and F H M Faisal Phys. Rev. A 60 3125 (1999)

    ADS  Google Scholar 

  76. A Goldberg, H M Schey and J L Scwartz Amer. J. Phys. 35 177 (1967)

    ADS  Google Scholar 

  77. S E Koonin and D C Meredith Computational Physics: Fortran Version (Redwood City, CA: Addison-Wesley) (1990)

    Google Scholar 

  78. L V Keldysh Zh. Eksp. Teor. Fiz. 47 1945 (1964) [Sov. Phys. JETP 20 1307 (1965)]

  79. M Lewenstein, K C Kulander, K J Schafer and P H Bucksbaum Phys. Rev. A 51 1495 (1995)

    ADS  Google Scholar 

  80. J Z Kamiński, A Jaroń and F Ehlotzky Phys. Rev. A 53 1756 (1996)

    ADS  Google Scholar 

  81. B Piraux, F Mota-Furtado, P F O’Mahony, A Galstyan and Yu V Popov Phys. Rev. A 96 043403 (2017)

    ADS  Google Scholar 

  82. T Nakajima and S Watanabe Phys. Rev. Lett. 96 213001 (2006)

    ADS  Google Scholar 

  83. T Nakajima and S Watanabe Opt. Lett. 31 1920 (2006)

    ADS  Google Scholar 

  84. D B Milošević, G G Paulus, D Bauer and W Becker J. Phys. B: At. Mol. Opt. Phys. 39 R203 (2006)

    Google Scholar 

  85. D B Milošević, G G Paulus and W Becker Phys. Rev. Lett. 89 153001 (2002)

    ADS  Google Scholar 

  86. C P J Martiny and L B Madsen Phys. Rev. Lett. 97 093001 (2006)

    ADS  Google Scholar 

  87. E Cormier and P J Lambropoulos J. Phys. B 30 77 (1997)

    ADS  Google Scholar 

  88. K J Schafer, B Yang, L F DiMauro and K C Kulander Phys. Rev. Lett. 70 1599 (1993)

    ADS  Google Scholar 

  89. P B Corkum Phys. Rev. Lett. 71 1994 (1993)

    ADS  Google Scholar 

  90. S Chelkowski and A D Bandrauk Phys. Rev. A 71 053815 (2005)

    ADS  Google Scholar 

  91. A N Grum-Grzhimailo, B Abeln, K Bartschat and D Weflen Phys. Rev. A 81 043408 (2010)

    ADS  Google Scholar 

  92. N Vence, R Harrison and P Krstić Phys. Rev. A 85 033403 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Université Catholique de Louvain (UCL, Belgium) for providing them with access to the supercomputer of the Calcul Intensif et Stockage de Masse (CISM/UCL). They gratefully acknowledge partial support of this work by the Abdus Salam International Centre for Theoretical Physics (ICTP) under the OEA-AF-12 project. H.M.T.N and M.G.K.N. thank Professor Bernard Piraux for his warm hospitality at UCL and the active cooperation between his laboratory and CEPAMOQ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. M. Tetchou Nganso or M. G. Kwato Njock.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tetchou Nganso, H.M., Abdouraman & Kwato Njock, M.G. Ionization of hydrogen atom driven by ultrashort intense laser pulses: study in momentum space of phase-dependent effects. Indian J Phys 98, 1937–1950 (2024). https://doi.org/10.1007/s12648-023-02972-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02972-w

Keywords

Navigation