Skip to main content
Log in

Assessment of the tolerance angle for pedicle screw insertion

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Cannulation process intervenes before implantation of pedicle screw and depends on the surgeon’s experience. A reliable experimental protocol has been developed for the characterization of the slipping behavior of the surgical tool on the cortical shell simulated by synthetic materials. Three types of synthetic foam samples with three different densities were tested using an MTS Acumen 3 A/T electrodynamic device with a tri-axis 3 kN Kistler load cell mounted on a surgical tool, moving at a constant rotational speed of 10° mm−1 and performing a three-step cannulation test. Cannulation angle varied between 10° and 30°. Synthetic samples were scanned after each tests, and cannulation coefficient associated to each perforation section was computed. Reproducibility tests resulted in an ICC for Sawbone samples of 0.979 (p < 0.001) and of 0.909 (p < 0.001) for Creaplast and Sawbone samples. Cannulation coefficient and maximum force in Z-axis are found the best descriptors of the perforation. Angular threshold for perforation prediction was found to be 17.5° with an area under the curve of the Receiver Operating Characteristic of 89.5%. This protocol characterizes the cannulation process before pedicle screw insertion and identifies the perforation tool angle until which the surgical tool slips on the cortical shell depending on bone quality.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AUC:

Area under curve

Cc:

Cannulation coefficients

COV:

Coefficient of variation

CT:

Computed tomography scan

cccort :

Cortical bone cannulation coefficients

DXA:

Dual-energy X-ray absorptiometry

ICC:

Intraclass correlation coefficient

PCA:

Principal component analysis

PCF:

Rigid polyurethane foams from Sawbone

ROC:

Receiver operating characteristic analysis

ccTrab :

Trabecular bone cannulation coefficients

References

  1. Du W, Zou D, Zhang J et al (2021) Guide wire displacement in robot-assisted spinal pedicle screw implantation. Wideochir Inne Tech Maloinwazyjne 16:526–535. https://doi.org/10.5114/wiitm.2021.103952

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu L, Hong X, Li J-B, Zhang S-K (2021) Delayed presentation of thoracic aortic pseudoaneurysm following pedicle screw implantation: a case report. Orthop Surg 13:338–341. https://doi.org/10.1111/os.12793

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gaines RWJ (2000) The use of pedicle-screw internal fixation for the operative treatment of spinal disorders*. JBJS 82:1458

    Article  Google Scholar 

  4. Kim YJ, Lenke LG, Bridwell KH et al (2004) Free hand pedicle screw placement in the thoracic spine: is it safe? Spine (Phila Pa 1976) 29:333–342. https://doi.org/10.1097/01.brs.0000109983.12113.9b. (discussion 342)

    Article  PubMed  Google Scholar 

  5. Suk S-I, Kim J-H, Kim S-S, Lim D-J (2012) Pedicle screw instrumentation in adolescent idiopathic scoliosis (AIS). Eur Spine J 21:13–22. https://doi.org/10.1007/s00586-011-1986-0

    Article  PubMed  Google Scholar 

  6. Vialle R, Zeller R, Gaines RW (2014) The “slide technique”: an improvement on the “funnel technique” for safe pedicle screw placement in the thoracic spine. Eur Spine J 23(Suppl 4):S452-456. https://doi.org/10.1007/s00586-014-3342-7

    Article  PubMed  Google Scholar 

  7. Li N, He D, Xing Y et al (2015) The effect of lateral wall perforation on screw pull-out strength: a cadaveric study. J Orthop Surg Res 10:6. https://doi.org/10.1186/s13018-015-0157-0

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vaccaro AR, Harris JA, Hussain MM et al (2020) Assessment of surgical procedural time, pedicle screw accuracy, and clinician radiation exposure of a novel robotic navigation system compared with conventional open and percutaneous freehand techniques: a cadaveric investigation. Global Spine J 10:814–825. https://doi.org/10.1177/2192568219879083

    Article  PubMed  Google Scholar 

  9. Rampersaud YR, Simon DA, Foley KT (2001) Accuracy requirements for image-guided spinal pedicle screw placement. Spine (Phila Pa 1976) 26:352–359. https://doi.org/10.1097/00007632-200102150-00010

    Article  CAS  PubMed  Google Scholar 

  10. Fennell VS, Palejwala S, Skoch J et al (2014) Freehand thoracic pedicle screw technique using a uniform entry point and sagittal trajectory for all levels: preliminary clinical experience. J Neurosurg Spine 21:778–784. https://doi.org/10.3171/2014.7.SPINE1489

    Article  PubMed  Google Scholar 

  11. Swaminathan G, Muralidharan V, Devakumar D, Joseph BV (2020) Accuracy of the freehand (Fennell) technique using a uniform entry point and sagittal trajectory for insertion of thoracic pedicle screws: a computed tomography-based virtual simulation study. Neurol India 68:468–471. https://doi.org/10.4103/0028-3886.284379

    Article  PubMed  Google Scholar 

  12. Abe Y, Ito M, Abumi K et al (2011) A novel cost-effective computer-assisted imaging technology for accurate placement of thoracic pedicle screws. J Neurosurg Spine 15:479–485. https://doi.org/10.3171/2011.6.SPINE10721

    Article  PubMed  Google Scholar 

  13. Chung KJ, Suh SW, Desai S, Song HR (2008) Ideal entry point for the thoracic pedicle screw during the free hand technique. Int Orthop 32:657–662. https://doi.org/10.1007/s00264-007-0363-4

    Article  PubMed  Google Scholar 

  14. Hu Y, Zhu B-K, Yuan Z-S et al (2019) Anatomic study of the lumbar lamina for safe and effective placement of lumbar translaminar facet screws. J Int Med Res 47:5082–5093. https://doi.org/10.1177/0300060519869719

    Article  PubMed  PubMed Central  Google Scholar 

  15. Karim A, Mukherjee D, Gonzalez-Cruz J et al (2006) Accuracy of pedicle screw placement for lumbar fusion using anatomic landmarks versus open laminectomy: a comparison of two surgical techniques in cadaveric specimens. Neurosurgery 59:ONS13-19. https://doi.org/10.1227/01.NEU.0000219942.12160.5C. (discussion ONS13-19)

    Article  PubMed  Google Scholar 

  16. Kim TH, Lee SH, Yang JH et al (2018) Clinical significance of superior articular process as a reference point for free-hand pedicle screw insertion in thoracic spine. Medicine (Baltimore) 97:e9907. https://doi.org/10.1097/MD.0000000000009907

    Article  PubMed  Google Scholar 

  17. Modi H, Suh SW, Song H-R, Yang J-H (2009) Accuracy of thoracic pedicle screw placement in scoliosis using the ideal pedicle entry point during the freehand technique. Int Orthop 33:469–475. https://doi.org/10.1007/s00264-008-0535-x

    Article  PubMed  Google Scholar 

  18. Modi HN, Suh S-W, Hong J-Y, Yang J-H (2010) Accuracy of thoracic pedicle screw using ideal pedicle entry point in severe scoliosis. Clin Orthop Relat Res 468:1830–1837. https://doi.org/10.1007/s11999-010-1280-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sonone S, Dahapute AA, Pal M et al (2017) Cadaveric study for ideal dorsal pedicle screw entry point. J Craniovertebr Junction Spine 8:127–131. https://doi.org/10.4103/jcvjs.JCVJS_5_17

    Article  PubMed  PubMed Central  Google Scholar 

  20. Su P, Zhang W, Peng Y et al (2012) Use of computed tomographic reconstruction to establish the ideal entry point for pedicle screws in idiopathic scoliosis. Eur Spine J 21:23–30. https://doi.org/10.1007/s00586-011-1962-8

    Article  PubMed  Google Scholar 

  21. Brown BS, McIff TE, Glattes RC et al (2010) The effect of starting point placement technique on thoracic transverse process strength: an ex vivo biomechanical study. Scoliosis 5:14. https://doi.org/10.1186/1748-7161-5-14

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Xie J, Wang Y et al (2014) Thoracic pedicle classification determined by inner cortical width of pedicles on computed tomography images: its clinical significance for posterior vertebral column resection to treat rigid and severe spinal deformities-a retrospective review of cases. BMC Musculoskelet Disord 15:278. https://doi.org/10.1186/1471-2474-15-278

    Article  PubMed  PubMed Central  Google Scholar 

  23. Danesi V, Zani L, Scheele A et al (2014) Reproducible reference frame for in vitro testing of the human vertebrae. J Biomech 47:313–318. https://doi.org/10.1016/j.jbiomech.2013.10.005

    Article  PubMed  Google Scholar 

  24. Cook SD, Salkeld SL, Stanley T et al (2004) Biomechanical study of pedicle screw fixation in severely osteoporotic bone. Spine J 4:402–408. https://doi.org/10.1016/j.spinee.2003.11.010

    Article  PubMed  Google Scholar 

  25. Cornaz F, Farshad M, Widmer J (2022) Location of pedicle screw hold in relation to bone quality and loads. Front Bioeng Biotechnol 10:953119

    Article  PubMed  PubMed Central  Google Scholar 

  26. Makaram H, Swaminathan R (2021) Influence of bone quality and pedicle screw design on the fixation strength during axial pull-out test: a 2D axisymmetric FE study. Annu Int Conf IEEE Eng Med Biol Soc 2021:4924–4927. https://doi.org/10.1109/EMBC46164.2021.9629484

    Article  PubMed  Google Scholar 

  27. Martel D, Monga A, Chang G (2022) Osteoporosis imaging. Radiol Clin North Am 60:537–545. https://doi.org/10.1016/j.rcl.2022.02.003

    Article  PubMed  Google Scholar 

  28. Morgan EF, Unnikrisnan GU, Hussein AI (2018) Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng 20:119–143. https://doi.org/10.1146/annurev-bioeng-062117-121139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus-density relationships depend on anatomic site. J Biomech 36:897–904. https://doi.org/10.1016/s0021-9290(03)00071-x

    Article  PubMed  Google Scholar 

  30. Morgan EF, Keaveny TM (2001) Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 34:569–577. https://doi.org/10.1016/s0021-9290(01)00011-2

    Article  CAS  PubMed  Google Scholar 

  31. Amirouche F, Solitro GF, Magnan BP (2016) Stability and spine pedicle screws fixation strength-a comparative study of bone density and insertion angle. Spine Deform 4:261–267. https://doi.org/10.1016/j.jspd.2015.12.008

    Article  PubMed  Google Scholar 

  32. Nagaraja S, Palepu V (2016) Comparisons of anterior plate screw pullout strength between polyurethane foams and thoracolumbar cadaveric vertebrae. J Biomech Eng 138:104505. https://doi.org/10.1115/1.4034427

    Article  Google Scholar 

  33. Nowak B (2019) Experimental study on the loosening of pedicle screws implanted to synthetic bone vertebra models and under non-pull-out mechanical loads. J Mech Behav Biomed Mater 98:200–204. https://doi.org/10.1016/j.jmbbm.2019.06.013

    Article  PubMed  Google Scholar 

  34. Horak Z, Dvorak K, Zarybnicka L et al (2020) Experimental measurements of mechanical properties of PUR foam used for testing medical devices and instruments depending on temperature, density and strain rate. Materials (Basel) 13:4560. https://doi.org/10.3390/ma13204560

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Varghese V, Krishnan V, Saravana Kumar G (2018) Testing pullout strength of pedicle screw using synthetic bone models: is a bilayer foam model a better representation of vertebra? Asian Spine J 12:398–406. https://doi.org/10.4184/asj.2018.12.3.398

    Article  PubMed  PubMed Central  Google Scholar 

  36. Oroszlany A, Nagy P, Kovacs J (2015) Compressive properties of commercially available PVC foams intended for use as mechanical models for human cancellous bone. Acta Polytech Hung 12:89–101

    Google Scholar 

  37. Hollensteiner M, Augat P, Furst D et al (2017) Novel synthetic vertebrae provide realistic haptics for pedicle screw placement. Annu Int Conf IEEE Eng Med Biol Soc 2017:46–49. https://doi.org/10.1109/EMBC.2017.8036759

    Article  PubMed  Google Scholar 

  38. Tsuji M, Crookshank M, Olsen M et al (2013) The biomechanical effect of artificial and human bone density on stopping and stripping torque during screw insertion. J Mech Behav Biomed Mater 22:146–156. https://doi.org/10.1016/j.jmbbm.2013.03.006

    Article  PubMed  Google Scholar 

  39. Asriyanti A, Saptaji K, Khoiriyah N et al (2022) Fabrication of rigid polyurethane foam lumbar spine model for surgical training using indirect additive manufacturing. Int J Technol 13:1612. https://doi.org/10.14716/ijtech.v13i8.6125

    Article  Google Scholar 

  40. Hollensteiner M, Botzenmayer M, Fürst D et al (2018) Characterization of polyurethane-based synthetic vertebrae for spinal cement augmentation training. J Mater Sci Mater Med 29:153. https://doi.org/10.1007/s10856-018-6161-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leblond L, Godio-Raboutet Y, Tomi F et al (2023) Sliding on cortical shell: biomechanical characterization of the vertebral cannulation for pedicle screw insertion. Clin Biomech 110:106102. https://doi.org/10.1016/j.clinbiomech.2023.106102

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Pr. K. Chaumoitre for the possibility to perform the CT scans; Virginie Bascop, anatomy preparer, for her help in preparing the samples. They kindly thank Camille Bellanger and Max Py for their implications in the development of the different tests. They acknowledge Wendy Silva-Verrissimo for the discussion of the methodology and support along the study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Samples and test preparation and data collection were performed by LL. Data analysis was performed by ME, YGR, and LL. Statistical analysis was performed by ME and YGR. The first draft of the manuscript was written by LL, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Morgane Evin.

Ethics declarations

Conflict of interest

Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid experts’ testimony, patient applications/registrations, and grants or other fundings.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leblond, L., Godio-Raboutet, Y., Glard, Y. et al. Assessment of the tolerance angle for pedicle screw insertion. Med Biol Eng Comput 62, 1265–1275 (2024). https://doi.org/10.1007/s11517-023-03002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-03002-x

Keywords

Navigation