Skip to main content
Log in

Multi-field Coupled Inverse Hall–Petch Relations for Ferroelectric Nanocrystals

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Tailoring grain size can improve the strength of polycrystals by regulating the proportion of grains to grain boundaries and the interaction area. As the grain size decreases to the nanoscale, the deformation mechanism in polycrystals shifts from being primarily mediated by dislocations to deformation occurring within the grains and grain boundaries. However, the mechanism responsible for fine-grain strengthening in ferroelectric materials remains unclear, primarily due to the complex multi-field coupling effect arising from spontaneous polarization. Through molecular dynamics simulations, we investigate the strengthening mechanism of barium titanate (BaTiO3), with extremely fine-grain sizes. This material exhibits an inverse Hall–Petch relationship between grain size and strength, rooting in the inhomogeneous concentration of atomic strain and grain rotation. Furthermore, we present a theoretical model to predict the transition from the inverse Hall–Petch stage to the Hall–Petch stage based on strength variations with size, which aligns well with the simulation results. It has been found that the piezoelectric properties of the BaTiO3 are affected by polarization domain switching at various grain sizes. This study enhances our understanding of the atomic-scale mechanisms that contribute to the performance evolution of fine-grain nano-ferroelectric materials. It also provides valuable insights into the design of extremely small-scale ferroelectric components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available within the article and its supplementary materials.

References

  1. Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Sect B. 1951;64(9):747.

    ADS  Google Scholar 

  2. Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst. 1953;174:25–8.

    CAS  Google Scholar 

  3. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H. Deformation-mechanism map for nano-crystalline metals by molecular-dynamics simulation. Nat Mater. 2004;3(1):43–7.

    ADS  CAS  PubMed  Google Scholar 

  4. Hu J, Shi YN, Sauvage X, Sha G, Lu K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science. 2017;355(6331):1292–6.

    ADS  CAS  PubMed  Google Scholar 

  5. Hasan MS, Lee R, Xu WW. Deformation nanomechanics and dislocation quantification at the atomic scale in nanocrystalline magnesium. J Magn Alloys. 2020;8(4):1296–303.

    CAS  Google Scholar 

  6. Chen S, Aitken ZH, Wu ZX, Yu ZG, Banerjee R, Zhang YW. Hall–Petch and inverse Hall–Petch relations in high-entropy CoNiFeAlxCu1x alloys. Mat Sci Eng A Struct. 2020;773:138873.

    CAS  Google Scholar 

  7. Shan ZW, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX. Grain boundary-mediated plasticity in nanocrystalline nickel. Science. 2004;305(5684):654–7.

    ADS  CAS  PubMed  Google Scholar 

  8. Wang LH, Teng J, Liu P, Hirata A, Ma E, Zhang Z, et al. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat Commun. 2014;5:4402.

    ADS  CAS  PubMed  Google Scholar 

  9. Rupert TJ, Gianola DS, Gan Y, Hemker KJ. Experimental observations of stress-driven grain boundary migration. Science. 2009;326(5960):1686–90.

    ADS  CAS  PubMed  Google Scholar 

  10. Zheng SX, Luo XM, Zhang GP. Cumulative shear strain-induced preferential orientation during abnormal grain growth near fatigue crack tips of nanocrystalline Au films. J Mater Res. 2020;35(4):372–9.

    ADS  CAS  Google Scholar 

  11. Coble RL. A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys. 1963;34(6):1679–82.

    ADS  Google Scholar 

  12. Yamakov V, Wolf D, Phillpot SR, Gleiter H. Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta Mater. 2002;50(1):61–73.

    ADS  CAS  Google Scholar 

  13. Ivanisenko Y, Kurmanaeva L, Weissmueller J, Yang K, Markmann J, Rosner H, et al. Deformation mechanisms in nanocrystalline palladium at large strains. Acta Mater. 2009;57(11):3391–401.

    ADS  CAS  Google Scholar 

  14. Figueiredo RB, Langdon TG. Effect of grain size on strength and strain rate sensitivity in metals. J Mater Sci. 2022;57(8):5210–29.

    ADS  CAS  Google Scholar 

  15. Figueiredo RB, Langdon TG. Deformation mechanisms in ultrafine-grained metals with an emphasis on the Hall–Petch relationship and strain rate sensitivity. J Mater Res Technol. 2021;14:137–59.

    CAS  Google Scholar 

  16. Han RQ, Song HY, Wang JY, Li YL. Strengthening mechanism of Al matrix composites reinforced by nickel-coated graphene: insights from molecular dynamics simulation. Phys B. 2021;601:412620.

    CAS  Google Scholar 

  17. Wang X, Zheng SX, Shinzato S, Fang ZW, He Y, Zhong L, et al. Atomistic processes of surface-diffusion-induced abnormal softening in nanoscale metallic crystals. Nat Commun. 2021;12:5237.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peng HL, Baker I, Hu L, Li LJ. Superior strength-ductility synergy in a novel tailored nanoparticles-strengthened medium-entropy alloy. Scr Mater. 2022;207:114278.

    CAS  Google Scholar 

  19. Mohammadi A, Enikeev NA, Murashkin MY, Arita M, Edalati K. Examination of inverse Hall–Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation. J Mater Sci Technol. 2021;91:78–89.

    CAS  Google Scholar 

  20. Li L, Xie BB, Fang QH, Li J. Machine learning approach to design high entropy alloys with heterogeneous grain structures. Metall Mater Trans A. 2021;52(2):439–48.

    ADS  Google Scholar 

  21. Lu XF, Dong CY, Guo X, Ren JQ, Xue HT, Tang FL, et al. Effects of grain size and temperature on mechanical properties of nano-polycrystalline nickel-cobalt alloy. J Mater Res Technol. 2020;9(6):13161–73.

    CAS  Google Scholar 

  22. Hou JL, Li Q, Wu CB, Zheng LM. Atomic simulations of grain structures and deformation behaviors in nanocrystalline CoCrFeNiMn high-entropy alloy. Materials. 2019;12(7):1010.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ratzker B, Wagner A, Sokol M, Meshi L, Kalabukhov S, Frage N. Deformation in nanocrystalline ceramics: a microstructural study of MgAl2O4. Acta Mater. 2020;183:137–44.

    ADS  CAS  Google Scholar 

  24. Sheinerman AG, Castro RHR, Gutkin MY. A model for direct and inverse Hall–Petch relation for nanocrystalline ceramics. Mater Lett. 2020;260:126886.

    CAS  Google Scholar 

  25. Li FS, Zhao HW, Yue YH, Yang Z, Zhang YW, Guo L. Dual-phase super-strong and elastic ceramic. ACS Nano. 2019;13(4):4191–8.

    CAS  PubMed  Google Scholar 

  26. Zheng P, Zhang JL, Tan YQ, Wang CL. Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics. Acta Mater. 2012;60(13–14):5022–30.

    ADS  CAS  Google Scholar 

  27. Huan Y, Wang XH, Fang J, Li LT. Grain size effects on piezoelectric properties and domain structure of BaTiO3 ceramics prepared by two-step sintering. J Am Ceram Soc. 2013;96(11):3369–71.

    CAS  Google Scholar 

  28. Shindo Y, Narita F, Kobayashi T. Phase field simulation on the electromechanical response of poled barium titanate polycrystals with oxygen vacancies. J Appl Phys. 2015;117(23):234103.

    ADS  Google Scholar 

  29. Tan YQ, Zhang JL, Wu YQ, Wang CL, Koval V, Shi BG, et al. Unfolding grain size effects in barium titanate ferroelectric ceramics. Sci Rep. 2015;5:9953.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu YQ, Zhang JL, Tan YQ, Zheng P. Notable grain-size dependence of converse piezoelectric effect in BaTiO3 ceramics. Ceram Int. 2016;42(8):9815–20.

    CAS  Google Scholar 

  31. Yin HM, Xu WJ, Zhou HW, Zhao XY, Huang YN. Effects of phase composition and grain size on the piezoelectric properties of HfO2-doped barium titanate ceramics. J Mater Sci. 2019;54(19):12392–400.

    ADS  CAS  Google Scholar 

  32. Chen Y, Ye HH, Wang XS, Li YX, Yao X. Grain size effects on the electric and mechanical properties of submicro BaTiO3 ceramics. J Eur Ceram Soc. 2020;40(2):391–400.

    CAS  Google Scholar 

  33. Buscaglia V, Randall CA. Size and scaling effects in barium titanate: an overview. J Eur Ceram Soc. 2020;40(11):3744–58.

    CAS  Google Scholar 

  34. Chen XT, Sun JX, Guo BB, Wang Y, Yu SX, Wang W, et al. Effect of the particle size on the performance of BaTiO3 piezoelectric ceramics produced by additive manufacturing. Ceram Int. 2022;48(1):1285–92.

    CAS  Google Scholar 

  35. Frey MH, Payne DA. Grain-size effect on structure and phase transformations for barium titanate. Phys Rev B. 1996;54(5):3158–68.

    ADS  CAS  Google Scholar 

  36. Cheng BL, Gabbay M, Maglione M, Fantozzi G. Relaxation motion and possible memory of domain structures in barium titanate ceramics studied by mechanical and dielectric losses. J Electroceram. 2003;10(1):5–18.

    CAS  Google Scholar 

  37. Buscaglia V, Buscaglia MT, Viviani M, Mitoseriu L, Nanni P, Trefiletti V, et al. Grain size and grain boundary-related effects on the properties of nanocrystalline barium titanate ceramics. J Eur Ceram Soc. 2006;26(14):2889–98.

    CAS  Google Scholar 

  38. Sun T, Wang XH, Wang H, Zhang XQ, Cheng ZD, Sun CQ, et al. A phenomenological model on phase transitions in nanocrystalline barium titanate ceramic. J Am Ceram Soc. 2010;93(9):2571–3.

    CAS  Google Scholar 

  39. Huan Y, Wang XH, Fang J, Li LT. Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics. J Eur Ceram Soc. 2014;34(5):1445–8.

    Google Scholar 

  40. Deng XY, Wang XH, Gui ZL, Li LT, Chen IW. Grain-size effects on the hardness of nanograin BaTiO3 ceramics. J Electroceram. 2008;21(1–4):238–41.

    CAS  Google Scholar 

  41. Trzepiecinski T, Gromada M. Characterization of mechanical properties of barium titanate ceramics with different grain sizes. Mater Sci Pol. 2018;36(1):151–6.

    ADS  CAS  Google Scholar 

  42. Hoshina T, Takizawa K, Li JY, Kasama T, Kakemoto H, Tsurumi T. Domain size effect on dielectric properties of barium titanate ceramics. Jpn J Appl Phys. 2008;47(9):7607.

    ADS  CAS  Google Scholar 

  43. Fujii I, Ugorek M, McKinstry ST. Grain size effect on the dielectric nonlinearity of BaTiO3 ceramics. J Appl Phys. 2010;107(10):104116.

    ADS  Google Scholar 

  44. Sapkota P, Ueno S, Fujii I, Khanal GP, Kim S, Wada S. Influence of grain size effect and Ba/Ti ratios on dielectric, ferroelectric, and piezoelectric properties of BaTiO3 ceramics. Jpn J Appl Phys. 2019;58:SLL05.

    Google Scholar 

  45. Lukacs VA, Airimioaei M, Padurariu L, Curecheriu LP, Ciomaga CE, Bencan A, et al. Phase coexistence and grain size effects on the functional properties of BaTiO3 ceramics. J Eur Ceram Soc. 2022;42(5):2230–47.

    CAS  Google Scholar 

  46. Polotai AV, Ragulya AV, Randall CA. Preparation and size effect in pure nanocrystalline barium titanate ceramics. Ferroelectrics. 2003;288:93–102.

    ADS  CAS  Google Scholar 

  47. Zhang YH, Hong JW, Liu B, Fang DN. Strain effect on ferroelectric behaviors of BaTiO3 nanowires: a molecular dynamics study. Nanotechnology. 2010;21:015701.

    ADS  PubMed  Google Scholar 

  48. Chae SC, Lee N, Horibe Y, Tanimura M, Mori S, Gao B, et al. Direct observation of the proliferation of ferroelectric loop domains and vortex-antivortex pairs. Phys Rev Lett. 2012;108(16):167603.

    ADS  CAS  PubMed  Google Scholar 

  49. Tian XB, Yang XH, Wang P, Peng D. Motion, collision and annihilation of polarization vortex pair in single crystalline BaTiO3 thin film. Appl Phys Lett. 2013;103(24):242905.

    ADS  Google Scholar 

  50. Sang YL, Liu B, Fang DN. The size and strain effects on the electric-field-induced domain evolution and hysteresis loop in ferroelectric BaTiO3 nanofilms. Comput Mater Sci. 2008;44(2):404–10.

    CAS  Google Scholar 

  51. Tinte S, Stachiotti MG, Sepliarsky M, Migoni RL, Rodriguez CO. Atomistic modeling of BaTiO3 based on first-principles calculations. J Phys Condens Mat. 1999;11(48):9679–90.

    ADS  CAS  Google Scholar 

  52. Tian D, Zhou CJ, He JH. Hall–Petch effect and inverse Hall–Petch effect: a fractal unification. Fractals. 2018;26(6):1850083.

    ADS  Google Scholar 

  53. Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51(4):427–556.

    CAS  Google Scholar 

  54. Carlton CE, Ferreira PJ. What is behind the inverse Hall–Petch effect in nanocrystalline materials? Acta Mater. 2007;55(11):3749–56.

    ADS  CAS  Google Scholar 

  55. Li GY, Sidibe K, Liu GR. Meshfree method for 3D bulk forming analysis with lower order integration scheme. Eng Anal Bound Elem. 2004;28(10):1283–92.

    Google Scholar 

  56. Dewith G. Structural integrity of ceramic multilayer capacitor materials and ceramic multilayer capacitors. J Eur Ceram Soc. 1993;12(5):323–36.

    CAS  Google Scholar 

  57. Mathews NG, Saxena AK, Kirchlechner C, Dehm G, Jaya BN. Effect of size and domain orientation on strength of barium titanate. Scr Mater. 2020;182:68–73.

    CAS  Google Scholar 

  58. Tian XB, He XQ, Lu J. Atomic scale study of the anti-vortex domain structure in polycrystalline ferroelectric. Philos Mag. 2018;98(2):118–38.

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 12172117, 12372154), National Science and Technology Major Project (No. J2019-III-0010-0054), National Numerical Windtunnel (No. NNW2019-JT01-023), and High-Performance Computing Center of Hebei University.

Author information

Authors and Affiliations

Authors

Contributions

XZ was contributed to conceptualization (equal); methodology (lead); investigation (equal); numerical validation (lead); writing—original draft (lead); writing—review and editing (equal). WY was contributed to writing—review and editing (equal). XL was contributed to data curation (equal); investigation (equal). YC was contributed to conceptualization (equal); writing—review and editing (equal). ZZ was contributed to writing—review and editing (equal). QW was contributed to writing—review and editing (equal). LM was contributed to funding acquisition (equal); supervision (equal); writing—review and editing (equal). XT was contributed to conceptualization (equal); funding acquisition (equal); supervision (lead); writing—review and editing (lead).

Corresponding authors

Correspondence to Lianhua Ma or Xiaobao Tian.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8813 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yan, W., Lou, X. et al. Multi-field Coupled Inverse Hall–Petch Relations for Ferroelectric Nanocrystals. Acta Mech. Solida Sin. 37, 139–147 (2024). https://doi.org/10.1007/s10338-023-00449-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-023-00449-1

Keywords

Navigation