Skip to main content
Log in

Numerical insights into rock–ice avalanche geophysical flow mobility through CFD–DEM simulation

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Geophysical flows like rock–ice avalanches have high mobility and destructive potential, causing global loss of life and property. Water, often from melted ice, significantly impacts their mobility. Experimental investigations of debris friction in a rotating drum with melting ice show reduced friction due to water. However, experimental limitations hinder extensive testing. Employing a numerical model can overcome this, facilitating the study of various scenarios in understanding such calamitous geophysical flows. In the current work, we numerically replicate the rotating drum experiment using Eulerian–Lagrangian CFD–DEM coupling. We focus on the initial and final states, considering a \(30\%\) gravel and \(70\%\) ice mixture (B12-070 ). We don’t model the ice melting; rather, we inject equivalent water over time. Our simulation captures changes in the frictional behavior of the gravel bulk and flow height profile, closely aligning with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(c_\textrm{p}\) :

Specific heat (J/(kg K))

d :

Particle diameter (m)

\(I_\textrm{i}\) :

Moment of inertia (kg \(\textrm{m}^2\))

m :

Mass (kg)

\(m'\) :

Mass source (kg/\(\textrm{m}^3\) s)

p :

Pressure (Pa)

\(q'\) :

Heat source (W/\(\textrm{m}^2\))

\(q''\) :

Heat flux (W/\(\textrm{m}^2\))

rR :

Radius (m)

t :

Time (s)

T :

Temperature (K)

\(T_{\textrm{final}}\) :

Length of simulation (s)

\(\vec {g}\) :

Acceleration due to gravity (m/s)

\(\vec {F^\textrm{c}}\) :

Contact forces (N)

\(\vec {F^\textrm{g}}\) :

Gravitational force (N)

\(\vec {F^{\textrm{ext}}}\) :

External forces (N)

\(\vec {F_\textrm{B}}\) :

Buoyancy force (N)

\(\vec {F_\textrm{D}}\) :

Drag force (N)

\(\vec {M_{i,j}}\) :

Torque generated by interparticle forces (N m)

\(\vec {S}\) :

Momentum source due particles

\(\vec {v}_\textrm{f}\) :

Fluid velocity field

\(\vec {X_i}\) :

Positional vector (m)

\(\vec {\omega }\) :

Rotational velocity (rad/s)

\(\alpha \) :

Heat transfer coefficient (W/(m K))

\(\beta \) :

Momentum exchange (kg/(\(\textrm{m}^3\) s)

\(\partial \) :

Differential operator (–)

\(\epsilon \) :

Volume fraction/porosity (–)

\(\mu \) :

Kinematic viscosity (Pa s)

\(\nabla \) :

Nabla operator (–)

\(\rho \) :

Density (kg/\(\textrm{m}^3\))

c:

Cell

cond:

Conduction

eff:

Effective values

f:

Fluid

ij :

Particle

n:

Normal direction

p, P:

Particle

rad:

Radiation

t:

Tangential direction

References

  1. Alexander D (1989) Urban landslides. Prog Phys Geogr 13(2):157–189

    Article  Google Scholar 

  2. Baniasadi M, Baniasadi M, Peters B (2018) Coupled CFD–DEM with heat and mass transfer to investigate the melting of a granular packed bed. Chem Eng Sci 178:136–145

    Article  Google Scholar 

  3. Berberović E, van Hinsberg NP, Jakirlić S, Roisman IV, Tropea C (2009) Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Phys Rev E 79(3):036306

    Article  MathSciNet  Google Scholar 

  4. Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28(2):179–191

    Article  MathSciNet  Google Scholar 

  5. Denlinger RP, Iverson RM (2004) Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. J Geophys Res Earth Surf. https://doi.org/10.1029/2003JF000085

    Article  Google Scholar 

  6. Fan X, Yunus AP, Yang YH, Subramanian SS, Zou C, Dai L, Dou X, Narayana AC, Avtar R, Xu Q et al (2022) Imminent threat of rock–ice avalanches in high mountain Asia. Sci Total Environ 836:155380

    Article  Google Scholar 

  7. Fang J, Cui Y, Li X, Nie J (2022) A new insight into the dynamic impact between geophysical flow and rigid barrier. Comput Geotech 148:104790

    Article  Google Scholar 

  8. Hertz H (1882) Ueber die berührung fester elastischer körper

  9. Hürlimann M, Copons R, Altimir J (2006) Detailed debris flow hazard assessment in Andorra: a multidisciplinary approach. Geomorphology 78(3–4):359–372

    Article  Google Scholar 

  10. Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J Geophys Res Solid Earth 106(B1):537–552

    Article  Google Scholar 

  11. Iverson RM, George DL (2014) A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc R Soc A Math Phys Eng Sci 470(2170):20130819

    MathSciNet  Google Scholar 

  12. Jing L, Kwok C, Leung YF, Sobral Y (2016) Extended CFD–DEM for free-surface flow with multi-size granules. Int J Numer Anal Meth Geomech 40(1):62–79

    Article  Google Scholar 

  13. Kong Y, Guan M, Li X, Zhao J, Yan H (2022) How flexible, slit and rigid barriers mitigate two-phase geophysical mass flows: a numerical appraisal. J Geophys Res Earth Surf 127(6):e2021JF006587

    Article  Google Scholar 

  14. Laigle D, Coussot P (1997) Numerical modeling of mudflows. J Hydraul Eng 123(7):617–623

    Article  Google Scholar 

  15. Li X, Zhao J (2018) Dam-break of mixtures consisting of non-Newtonian liquids and granular particles. Powder Technol 338:493–505

    Article  Google Scholar 

  16. Mahmoudi AH, Hoffmann F, Peters B (2014) Application of XDEM as a novel approach to predict drying of a packed bed. Int J Therm Sci 75:65–75

    Article  Google Scholar 

  17. Mahmoudi AH, Markovic M, Peters B, Brem G (2015) An experimental and numerical study of wood combustion in a fixed bed using Euler–Lagrange approach (XDEM). Fuel 150:573–582

    Article  Google Scholar 

  18. Mahmoudi AH, Hoffmann F, Peters B (2016) Semi-resolved modeling of heat-up, drying and pyrolysis of biomass solid particles as a new feature in XDEM. Appl Therm Eng 93:1091–1104

    Article  Google Scholar 

  19. Mindlin RD (1949) Compliance of elastic bodies in contact

  20. Peters B, Baniasadi M, Baniasadi M, Besseron X, Donoso AE, Mohseni M, Pozzetti G (2019) XDEM multi-physics and multi-scale simulation technology: review of DEM–CFD coupling, methodology and engineering applications. Particuology 44:176–193

    Article  Google Scholar 

  21. Pitman EB, Le L (2005) A two-fluid model for avalanche and debris flows. Philos Trans R Soc A Math Phys Eng Sci 363(1832):1573–1601

    Article  MathSciNet  Google Scholar 

  22. Pouliquen O, Forterre Y (2002) Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J Fluid Mech 453:133–151

    Article  Google Scholar 

  23. Pozzetti G, Peters B (2018) A multiscale DEM–VOF method for the simulation of three-phase flows. Int J Multiph Flow 99:186–204

    Article  MathSciNet  Google Scholar 

  24. Pudasaini S, Wang Y, Hutter K (2005) Modelling debris flows down general channels. Nat Hazard 5(6):799–819

    Article  Google Scholar 

  25. Pudasaini SP (2012) A general two-phase debris flow model. J Geophys Res Earth Surf. https://doi.org/10.1029/2011JF002186

    Article  Google Scholar 

  26. Pudasaini SP, Fischer JT (2020) A mechanical model for phase separation in debris flow. Int J Multiph Flow 129:103292

    Article  MathSciNet  Google Scholar 

  27. Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer Science & Business Media, Berlin

    Google Scholar 

  28. Pudasaini SP, Mergili M (2019) A multi-phase mass flow model. J Geophys Res Earth Surf 124(12):2920–2942

    Article  Google Scholar 

  29. Sandia National Labs, Kitware Inc and Los Alamos National Labs (2000–2008) Paraview: parallel visualization application. http://paraview.org

  30. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Article  MathSciNet  Google Scholar 

  31. Savage SB, Hutter K (1991) The dynamics of avalanches of granular materials from initiation to runout. Part I: analysis. Acta Mech 86(1–4):201–223

    Article  MathSciNet  Google Scholar 

  32. Schiller L (1933) A drag coefficient correlation. Zeit Ver Deutsch Ing 77:318–320

    Google Scholar 

  33. Schneider D, Kaitna R, Dietrich W, Hsu L, Huggel C, McArdell B (2011) Frictional behavior of granular gravel–ice mixtures in vertically rotating drum experiments and implications for rock–ice avalanches. Cold Reg Sci Technol 69(1):70–90

    Article  Google Scholar 

  34. Shan T, Zhao J (2014) A coupled CFD–DEM analysis of granular flow impacting on a water reservoir. Acta Mech 225:2449–2470

  35. Shugar DH, Jacquemart M, Shean D, Bhushan S, Upadhyay K, Sattar A, Schwanghart W, McBride S, De Vries MVW, Mergili M et al (2021) A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 373(6552):300–306

    Article  Google Scholar 

  36. Sosio R, Crosta GB, Chen JH, Hungr O (2012) Modelling rock avalanche propagation onto glaciers. Quat Sci Rev 47:23–40

    Article  Google Scholar 

  37. Takebayashi H, Fujita M (2020) Numerical simulation of a debris flow on the basis of a two-dimensional continuum body model. Geosciences 10(2):45

    Article  Google Scholar 

  38. Taylor-Noonan AM, Bowman ET, McArdell BW, Kaitna R, McElwaine JN, Take WA (2022) Influence of pore fluid on grain-scale interactions and mobility of granular flows of differing volume. J Geophys Res Earth Surf 127(12):e2022JF006622

    Article  Google Scholar 

  39. Trujillo-Vela MG, Ramos-Cañón AM, Escobar-Vargas JA, Galindo-Torres SA (2022) An overview of debris-flow mathematical modelling. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2022.104135

    Article  Google Scholar 

  40. Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71(3):239–250

    Article  Google Scholar 

  41. Wang T, Zhang F, Furtney J, Damjanac B (2022) A review of methods, applications and limitations for incorporating fluid flow in the discrete element method. J Rock Mech Geotech Eng 14(3):1005–1024

    Article  Google Scholar 

  42. Xiao H, Sun J (2011) Algorithms in a robust hybrid CFD–DEM solver for particle-laden flows. Commun Comput Phys 9(2):297–323

    Article  MathSciNet  Google Scholar 

  43. Xu WJ, Dong XY (2021) Simulation and verification of landslide tsunamis using a 3D SPH–DEM coupling method. Comput Geotech 129:103803

    Article  Google Scholar 

  44. Xu WJ, Yao ZG, Luo YT, Dong XY (2020) Study on landslide-induced wave disasters using a 3D coupled SPH–DEM method. Bull Eng Geol Env 79:467–483

    Article  Google Scholar 

  45. Zhang D, Whiten W (1996) The calculation of contact forces between particles using spring and damping models. Powder Technol 88(1):59–64

    Article  Google Scholar 

  46. Zhao T, Houlsby G, Utili S (2014) Investigation of submerged debris flows via CFD–DEM coupling. IS-Cambridge, Geomechanics from Micro to Macro Taylor and Francis Group, Cambridge, pp 497–502

    Google Scholar 

Download references

Acknowledgements

PA contributed to conceptualization, methodology, software, validation, formal analysis, investigation, figures, writing—original draft, and review revision and editing; ZF contributed to conceptualization, methodology, writing—original draft, and review revision and editing; TN performed review revision; BP performed review revision and supervision; XF contributed to funding acquisition, review revision and supervision.

Funding

This research is financially supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 42125702); Tencent Foundation through the XPLORER PRIZE (Grant No. XPLORER-2022-1012); Natural Science Foundation of Sichuan Province (Grant Nos. 22NSFSC0029 and 2023NSFSC0808); and National Natural Science Foundation of China (Grant No. 42207226). The numerical experiments presented in this paper were carried out using the HPC facilities of the University of Luxembourg—see https://hpc.uni.lu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad Adhav.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhav, P., Feng, Z., Ni, T. et al. Numerical insights into rock–ice avalanche geophysical flow mobility through CFD–DEM simulation. Comp. Part. Mech. (2024). https://doi.org/10.1007/s40571-023-00699-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-023-00699-3

Keywords

Navigation