Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Weak-lensing detection of intracluster filaments in the Coma cluster

Abstract

The concordance cosmological model predicts that galaxy clusters grow at the intersection of filaments that structure the cosmic web and extend tens of megaparsecs. Although this hypothesis has been supported by the baryonic components, no observational study has detected the dark matter component of the intracluster filaments (ICFs), the terminal segment of the large-scale cosmic filaments at their conjunction with individual clusters. We report weak-lensing detection of ICFs in the Coma cluster field from the 12-deg2 Hyper Suprime-Cam imaging data. The detection is based on two methods, the matched-filter technique and the shear-peak statistic. The matched-filter technique yields detection significances of 6.6σ and 3.6σ for the northern and western ICFs at 110° and 340°, respectively. The shear-peak statistic yields detection significances of 3.1σ and 2.8σ for these ICFs. Both ICFs are highly correlated with the overdensities in the weak-lensing mass reconstruction and are well aligned with the known large-scale (>10 Mpc) cosmic filaments associated with the Coma supercluster.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mass reconstruction and matched-filter statistic of the Coma cluster.
Fig. 2: Intracluster filament detection based on shear-peak statistic.
Fig. 3: Posterior distributions of the filament model parameters estimated from the Markov Chain Monte Carlo sampling.
Fig. 4: Alignment of the ICFs with the large-scale filaments.

Similar content being viewed by others

Data availability

The raw Subaru HSC imaging data used for the current study are publicly available. The processed mosaic images and data points in the article figures are available on request from the authors. Source data are provided with this paper.

Code availability

Our custom data processing codes are available on request from the authors.

References

  1. Cautun, M., van de Weygaert, R., Jones, B. J. T. & Frenk, C. S. Evolution of the cosmic web. Mon. Not. R. Astron. Soc. 441, 2923–2973 (2014).

    ADS  Google Scholar 

  2. Kuchner, U. et al. Mapping and characterization of cosmic filaments in galaxy cluster outskirts: strategies and forecasts for observations from simulations. Mon. Not. R. Astron. Soc. 494, 5473–5491 (2020).

    ADS  CAS  Google Scholar 

  3. Rost, A. et al. The ThreeHundred: the structure and properties of cosmic filaments in the outskirts of galaxy clusters. Mon. Not. R. Astron. Soc. 502, 714–727 (2021).

    ADS  CAS  Google Scholar 

  4. Maturi, M. & Merten, J. Weak-lensing detection of intracluster filaments with ground-based data. Astron. Astrophys. 559, A112 (2013).

    ADS  Google Scholar 

  5. Colberg, J. M., Krughoff, K. S. & Connolly, A. J. Intercluster filaments in a ΛCDM Universe. Mon. Not. R. Astron. Soc. 359, 272–282 (2005).

    ADS  Google Scholar 

  6. Mahajan, S., Singh, A. & Shobhana, D. Ultraviolet and optical view of galaxies in the Coma supercluster. Mon. Not. R. Astron. Soc. 487, 4336–4347 (2018).

    ADS  Google Scholar 

  7. Malavasi, N. et al. Like a spider in its web: a study of the large-scale structure around the Coma cluster. Astron. Astrophys. 634, A30 (2020).

    CAS  Google Scholar 

  8. Williams, B. A. & Kerr, F. J. The distribution of the spiral galaxies in the direction of the Coma/A 1367 supercluster. Astron. J. 86, 953–980 (1981).

    ADS  Google Scholar 

  9. Fontanelli, P. The Coma/A1367 filament of galaxies. Astron. Astrophys. 138, 85–92 (1984).

    ADS  CAS  Google Scholar 

  10. Kim, K. T., Kronberg, P. P., Giovannini, G. & Venturi, T. Discovery of intergalactic radio emission in the Coma-A1367 supercluster. Nature 341, 720–723 (1989).

    ADS  Google Scholar 

  11. Gavazzi, G., Carrasco, L. & Galli, R. The 3-D structure of the Coma-A 1367 supercluster: optical spectroscopy of 102 galaxies. Astron. Astrophys. 136, 227–235 (1996).

    Google Scholar 

  12. Gregory, S. A. & Thompson, L. A. The Coma/A1367 supercluster and its environs. Astrophys. J. 222, 784–799 (1978).

    ADS  Google Scholar 

  13. Ahumada, R. et al. The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra. Astrophys. J. Suppl. S. 249, 3 (2020).

    ADS  CAS  Google Scholar 

  14. Galárraga-Espinosa, D. et al. Relative distribution of dark matter, gas, and stars around cosmic filaments in the IllustrisTNG simulation. Astron. Astrophys. 661, A115 (2022).

    Google Scholar 

  15. Dietrich, J. et al. A filament of dark matter between two clusters of galaxies. Nature 487, 202–204 (2012).

    ADS  CAS  PubMed  Google Scholar 

  16. Jauzac, M. et al. A weak lensing mass reconstruction of the large-scale filament feeding the massive galaxy cluster MACS J0717.5+3745. Mon. Not. R. Astron. Soc. 426, 3369–3384 (2012).

    ADS  Google Scholar 

  17. Jauzac, M. et al. Growing a ‘cosmic beast’: observations and simulations of MACS J0717.5+3745. Mon. Not. R. Astron. Soc. 481, 2901–2917 (2018).

    ADS  CAS  Google Scholar 

  18. Ma, C., Ebeling, H. & Barrett, E. An X-ray/optical study of the complex dynamics of the core of the massive intermediate-redshift cluster MACS J0717.5+3745. Astrophys. J. 693, L56 (2009).

    ADS  CAS  Google Scholar 

  19. Eckert, D. et al. Warm–hot baryons comprise 5–10 per cent of filaments in the cosmic web. Nature 528, 105–107 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoekstra, H. How well can we determine cluster mass profiles from weak lensing? Mon. Not. R. Astron. Soc. 339, 1155–1162 (2003).

    ADS  Google Scholar 

  21. Osato, K., Liu, J. & Haiman, Z. \(\kappa\)TNG: effect of baryonic processes on weak lensing with IllustrisTNG simulations. Mon. Not. R. Astron. Soc. 502, 5593–5602 (2021).

    ADS  CAS  Google Scholar 

  22. Nelson, D. et al. The IllustrisTNG simulations: public data release. Comput. Astrophys. Cosmol. 6, 2 (2019).

    ADS  Google Scholar 

  23. Pillepich, A. et al. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 475, 648–675 (2018).

    ADS  CAS  Google Scholar 

  24. Springel, V. et al. First results from the IllustrisTNG simulations: matter and galaxy clustering. Mon. Not. R. Astron. Soc. 475, 676–698 (2018).

    ADS  CAS  Google Scholar 

  25. Nelson, D. et al. First results from the IllustrisTNG simulations: the galaxy colour bimodality. Mon. Not. R. Astron. Soc. 475, 624–647 (2018).

    ADS  CAS  Google Scholar 

  26. Naiman, J. P. et al. First results from the IllustrisTNG simulations: a tale of two elements - chemical evolution of magnesium and europium. Mon. Not. R. Astron. Soc. 477, 1206–1224 (2018).

    ADS  CAS  Google Scholar 

  27. Marinacci, F. et al. First results from the IllustrisTNG simulations: radio haloes and magnetic fields. Mon. Not. R. Astron. Soc. 480, 5113–5139 (2018).

    ADS  CAS  Google Scholar 

  28. Reblinsky, K., Kruse, G., Jain, B. & Schneider, P. Cosmic shear and halo abundances: analytical versus numerical results. Astron. Astrophys. 351, 815–826 (1999).

    ADS  Google Scholar 

  29. Dietrich, J. P. & Hartlap, J. Cosmology with the shear-peak statistics. Mon. Not. R. Astron. Soc. 402, 1049–1058 (2010).

    ADS  Google Scholar 

  30. Kratochvil, J. M., Haiman, Z. & May, M. Probing cosmology with weak lensing peak counts. Phys. Rev. D 81, 043519 (2010).

    ADS  Google Scholar 

  31. Maturi, M., Angrick, C., Pace, F. & Bartelmann, M. An analytic approach to number counts of weak-lensing peak detections. Astron. Astrophys. 519, A23 (2010).

    ADS  Google Scholar 

  32. Bard, D. et al. Effect of measurement errors on predicted cosmological constraints from shear peak statistics with Large Synoptic Survey Telescope. Astrophys. J. 774, 49 (2013).

    ADS  CAS  Google Scholar 

  33. Marian, L., Smith, R. E., Hilbert, S. & Schneider, P. The cosmological information of shear peaks: beyond the abundance. Mon. Not. R. Astron. Soc. 432, 1338–1350 (2013).

    ADS  Google Scholar 

  34. White, M. & Kochanek, C. S. Constraints on the long-range properties of gravity from weak gravitational lensing. Astrophys. J. 560, 539–543 (2001).

    ADS  Google Scholar 

  35. Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. 117, 393–404 (1996).

    ADS  Google Scholar 

  36. Bosch, J. et al. The Hyper Suprime-Cam software pipeline. Publ. Astron. Soc. Jpn 70, S5 (2018).

    Google Scholar 

  37. Shupe, D. L. et al. More flexibility in representing geometric distortion in astronomical images. In Proc. SPIE (eds Radziwill, N. M. & Chiozzi, G.) 84511M (SPIE, 2012).

  38. Weaver, J. R. et al. COSMOS2020: a panchromatic view of the universe to z ~ 10 from two complementary catalogs. Astrophys. J. Suppl. S. 258, 11 (2022).

    ADS  Google Scholar 

  39. Markwardt, C. B. Non-linear least-squares fitting in IDL with MPFIT. In Proc. Astronomical Data Analysis Software and Systems XVIII ASP Conference Series (eds Bohlender, D. A. et al.) 251 (Astronomical Society of the Pacific, 2009).

  40. Dahlen, T. et al. A detailed study of photometric redshifts for GOODS-South galaxies. Astrophys. J. 724, 425–447 (2010).

    ADS  Google Scholar 

  41. Jee, M. J. et al. Principal component analysis of the time- and position-dependent point-spread function of the Advanced Camera for Surveys. Publ. Astron. Soc. Pac. 199, 1403 (2007).

    ADS  Google Scholar 

  42. Jee, M. J. & Tyson, J. A. Toward precision LSST weak-lensing measurement. I. Impacts of atmospheric turbulence and optical aberration. Publ. Astron. Soc. Pac. 123, 596 (2011).

    ADS  Google Scholar 

  43. Finner, K. et al. MC2: Subaru and Hubble Space Telescope weak-lensing analysis of the double radio relic galaxy cluster PLCK G287.0+32.9. Astrophys. J. 851, 46 (2017).

    ADS  Google Scholar 

  44. HyeongHan, K. et al. Discovery of a radio relic in the massive merging cluster SPT-CL J2023-5535 from the ASKAP-EMU Pilot Survey. Astrophys. J. 900, 127 (2020).

    ADS  CAS  Google Scholar 

  45. Finner, K. et al. Exemplary merging clusters: weak-lensing and X-ray analysis of the double radio relic, merging galaxy clusters MACS J1752.0+4440 and ZWCL 1856.8+6616. Astrophys. J. 918, 72 (2021).

    ADS  CAS  Google Scholar 

  46. Cho, H. et al. Multiwavelength analysis of A1240, the double radio-relic merging galaxy cluster embedded in an 80 Mpc-long cosmic filament. Astrophys. J. 925, 68 (2022).

    ADS  Google Scholar 

  47. Finner, K. et al. Hubble Space Telescope and Hyper-Suprime-Cam weak-lensing study of the equal-mass dissociative merger CIZA J0107.7+5408. Astrophys. J. 942, 23 (2023).

    ADS  Google Scholar 

  48. Dawson, W. A. et al. The ellipticity distribution of ambiguously blended objects. Astrophys. J. 816, 11 (2016).

    ADS  Google Scholar 

  49. Mandelbaum, R. et al. GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology. Mon. Not. R. Astron. Soc. 450, 2963–3007 (2015).

    ADS  Google Scholar 

  50. Hong, S. E. et al. Weak-lensing mass reconstruction of galaxy clusters with a convolutional neural network. Astrophys. J. 923, 266 (2021).

    ADS  CAS  Google Scholar 

  51. Kaiser, N. & Squires, G. Mapping the dark matter with weak gravitational lensing. Astrophys. J. 404, 441 (1993).

    ADS  Google Scholar 

Download references

Acknowledgements

M.J.J. acknowledges support for the current research from the National Research Foundation (NRF) of Korea under the programmes 2022R1A2C1003130 and RS-2023-00219959.

Author information

Authors and Affiliations

Authors

Contributions

K.H. reduced the data, measured WL signals and filaments and wrote the manuscript. M.J.J. designed the research, created the reduction pipeline, coded the filament detection filter and wrote the manuscript. S.C. provided the mass reconstruction based on a convolutional neural network. H.C. identified the filaments based on the Coma galaxy distribution.

Corresponding author

Correspondence to M. James Jee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Smriti Mahajan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 WL S/N per physical area variation with the lens redshift.

Red solid line is the lensing efficiency β. Blue solid line is the WL S/N per physical area (λ) normalized by the value at \(z=0.5\). While the lensing efficiency is reduced approximately two orders of magnitude as the lens redshift decreases from z = 0.5 to the Coma redshift (z = 0.023\()\), the net WL S/N per physical area at the lens redshift increases approximately by a factor of three. This net gain is due to the combined effect of the higher score density \(n\) and lower LSS noise \({\sigma }_{{LSS}}\) per physical area at the Coma redshift. Here we assume that the purity \(\eta\) is the same across the lens redshift. In fact, \(\eta\) is also expected to be higher at the Coma redshift because of the proximity.

Source data

Extended Data Fig. 2 Matched-filter detection of the ICFs in the Coma cluster.

Black (red) solid line represents the tangential (cross)-shear component. Dark shade indicates the shot noise (equation 5). Light shade includes both the shot noise and the noise due to the LSS effect. Three ICFs (N, SE and W) are detected with a significance level higher than 3\(\sigma\). The cross-component crosses zero at these locations.

Source data

Extended Data Fig. 3 Matched-filter detection with a mock filament-cluster configuration.

Top Left: Mock convergence map with two filaments and an NFW halo displayed in log scale. Mock filaments are oriented at 10° and 70° with an NFW halo at the centre. The linear mass density of the filament mf = 1.2 × 1014 MMpc−1 and the halo mass M200 = 8 × 1014 \({M}_{\odot }\) are motivated by our measurements in Coma. Whiskers show the resulting WL shear. Inner and outer yellow circles indicate r = 1 and 2.8 Mpc, respectively. Top Right: Black (red) solid line indicates the tangential (cross)-component \({\Gamma }_{+}({\Gamma }_{\times })\). The tangential-shear component is also shown in the left panel (black solid) in polar coordinates. Bottom: Same as the top panels except that another M200 = 8 × 1014 \({M}_{\odot }\) halo is placed (white arrow) at θ = 120°, 1.2 Mpc apart from the centre. The tangential component \({\Gamma }_{+}\) is sensitive to the filamentary mass structure and peaks at the correct angles. Although the off-centre halo gives rise to a small peak at θ = 120°, its height is much weaker than those arising from the real filamentary structures. Here we show the version that does not include intrinsic shape noise for illustration purposes. With the inclusion of the shape noise, the tangential-component peak due to the halo is below our detection threshold.

Source data

Extended Data Table 1 Physical Properties of the Intracluster Filaments

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Table 1.

Supplementary Data 1

Source data for Supplementary Figs. 2 and 3 and Table 1.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

HyeongHan, K., Jee, M.J., Cha, S. et al. Weak-lensing detection of intracluster filaments in the Coma cluster. Nat Astron 8, 377–383 (2024). https://doi.org/10.1038/s41550-023-02164-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02164-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing