Skip to main content
Log in

Defect Induced Ultrafast Organic Dye Adsorption by Amorphous Titanium Dioxide/Phosphorus-Doped Carbon Nanodot Hybrid

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The research article introduces the unexplored synergistic effect of amorphous titanium dioxide and phosphorus-doped carbon nanodot hybrid [C-TiO2(am)] for the ultrafast adsorption of methylene blue and crystal violet dyes. The hybrid eliminates 98% of methylene blue dye (MB) at a concentration of 32 mg/L and 96% of crystal violet dye at a concentration of 62 mg/L from the aqueous solution within 5 min of contact time at ambient temperature. The incorporation of phosphorus-doped carbon nanodot in amorphous TiO2 modifies the oxygen vacancy, which enhances the material's affinity for organic dyes like MB and crystal violet. The significance of defects on the adsorption efficiency of C-TiO2 (am) is obtained and compared with that of amorphous titanium dioxide [TiO2(am)] and the crystalline phase of hybrid (C-TiO2). The dye removal percentages of TiO2 (am) and C-TiO2 are ca.3% and ca.32%, respectively, which is feeble compared to the dye removal percentage of C-TiO2 (am) (ca. 98%). The possible mechanism of organic dye adsorption of C-TiO2 (am) is derived through the detailed discussion of porosity, morphology, functional groups, and chemical compositions. The impact of temperature on dye adsorption and removal rate is determined using non-linear regression analysis. The remarkable characteristic adsorption features of C-TiO2 (am) suggest that it can be considered as a new potential adsorbent for water purification. The remarkable characteristic adsorption features of C-TiO2 (am) suggest that it can be considered as a new potential adsorbent for water purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data will be provided at the request of peer reviewers.

References

  1. Z. Zhang, T. Zheng, X. Li, J. Xu, and H. Zeng (2016). Part. Part. Syst .Charact.https://doi.org/10.1002/ppsc.201500243.

    Article  Google Scholar 

  2. C. Dong, M. Xing, J. Lei, and J. Zhang (2020). Curr. Dev. Photocatal. Photocatal. Mater. https://doi.org/10.1016/b978-0-12-819000-5.00019-9.

    Article  Google Scholar 

  3. G. Sharma, A. Kumar, M. Naushad, B. Thakur, D. V. N. Vo, B. Gao, A. A. Al-Kahtani, and F. J. Stadler (2021). J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2021.125714.

    Article  PubMed  PubMed Central  Google Scholar 

  4. T. J. Al-Musawi, P. Rajiv, N. Mengelizadeh, I. A. Mohammed, and D. Balarak (2021). J. Environ. Manage.. https://doi.org/10.1016/j.jenvman.2021.112777.

    Article  PubMed  Google Scholar 

  5. X. Zhou, L. Wang, X. Liu, M. Xu, and X. Liu (2019). Compos. B Eng.. https://doi.org/10.1016/j.compositesb.2019.107414.

    Article  Google Scholar 

  6. T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, and N. Serpone (2001). J. Photochem. Photobiol. A Chem.. https://doi.org/10.1016/S1010-6030(01)00398-7.

    Article  Google Scholar 

  7. S. Sohrabnezhad (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. https://doi.org/10.1016/j.saa.2011.05.109.

    Article  PubMed  Google Scholar 

  8. M. Ritika, A. Kaur, S. K. Umar, S. Mehta, S. K. Singh, H. Kansal, and O. Y. Fouad (2018). Alothman. Mater. https://doi.org/10.3390/ma11112254.

    Article  Google Scholar 

  9. A. Krishna Moorthy, B. Govindarajan Rathi, S. P. Shukla, K. Kumar, and V. Shree Bharti (2021). Environ. Toxicol. Pharmacol. https://doi.org/10.1016/j.etap.2020.103552.

    Article  PubMed  Google Scholar 

  10. J. Iqbal, N. S. Shah, M. Sayed, N. K. Niazi, M. Imran, J. A. Khan, Z. U. H. Khan, A. G. S. Hussien, K. Polychronopoulou, and F. Howari (2021). J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2020.123854.

    Article  PubMed  Google Scholar 

  11. Y. Li, Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia, and L. Xia (2013). Chem. Eng. Res. Design. https://doi.org/10.1016/j.cherd.2012.07.007.

    Article  Google Scholar 

  12. N. Masoudian, M. Rajabi, and M. Ghaedi (2019). Polyhedron. https://doi.org/10.1016/j.poly.2019.114105.

    Article  Google Scholar 

  13. T. Fazal, A. Razzaq, F. Javed, A. Hafeez, N. Rashid, U. S. Amjad, M. S. Ur Rehman, A. Faisal, and F. Rehman (2020). J. Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121623.

    Article  PubMed  Google Scholar 

  14. J. Wang and X. Guo (2020). Chemosphere https://doi.org/10.1016/j.chemosphere.2020.127279.

    Article  PubMed  PubMed Central  Google Scholar 

  15. A. H. Jawad, A. Saud Abdulhameed, L. D. Wilson, S. S. A. Syed-Hassan, Z. A. ALOthman, and M. RizwanKhan (2021). Chin. J. Chem. Eng. https://doi.org/10.1016/j.cjche.2020.09.070.

    Article  Google Scholar 

  16. P. Zhang, Adsorption and Desorption Isotherms, (KE group, 2016) http://www.keresearchgroup.com/uploads/4/8/4/5/48456521/160903 introduction_to_bet_isotherms.pdf .Accessed 16 November 2023

  17. R. Gopinathan, A. Bhowal, and C. Garlapati (2019). J. Chem. Eng. Data. https://doi.org/10.1021/acs.jced.8b01102.

    Article  Google Scholar 

  18. I. Ali and V. K. Gupta (2007). Nat. Protoc. https://doi.org/10.1038/nprot.2006.370.

    Article  Google Scholar 

  19. J. Zhang, M. Yan, X. Yuan, M. Si, L. Jiang, Z. Wu, H. Wang, and G. Zeng (2018). J. Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2018.05.109.

    Article  PubMed  PubMed Central  Google Scholar 

  20. M. Pirsaheb, A. Asadi, M. Sillanpää, and N. Farhadian (2018). J. Mol. Liq. https://doi.org/10.1016/j.molliq.2018.09.064.

    Article  Google Scholar 

  21. M. de la Luz-Asunción, E. E. Pérez-Ramírez, A. L. Martínez-Hernández, P. E. García-Casillas, J. G. Luna-Bárcenas, and C. Velasco-Santos (2020). Diam. Relat. Mater. https://doi.org/10.1016/j.diamond.2020.108002.

    Article  Google Scholar 

  22. G. L. Dotto and G. McKay (2020). J. Environ. Chem. Eng. https://doi.org/10.1016/j.jece.2020.103988.

    Article  Google Scholar 

  23. A. Mehta, A. Mishra, S. Basu, N. P. Shetti, K. R. Reddy, T. A. Saleh, and T. M. Aminabhavi (2019). J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2019.109486.

    Article  PubMed  Google Scholar 

  24. A. G. El-Shamy and H. S. S. Zayied (2020). Synth. Met. https://doi.org/10.1016/j.synthmet.2019.116218.

    Article  Google Scholar 

  25. S. MiarAlipour, D. Friedmann, J. Scott, and R. Amal (2018). J. Hazard Mater. https://doi.org/10.1016/j.jhazmat.2017.07.070.

    Article  PubMed  Google Scholar 

  26. A. Tadesse, D. Ramadevi, M. Hagos, G. Battu, and K. Basavaiah (2018). RSC Adv. https://doi.org/10.1039/c8ra00158h.

    Article  PubMed  PubMed Central  Google Scholar 

  27. A. G. El-Shamy (2020). Polymer. https://doi.org/10.1016/j.polymer.2020.122565.

    Article  Google Scholar 

  28. S. Mallakpour and V. Behranvand (2018). J. Clean Prod. https://doi.org/10.1016/j.jclepro.2018.04.120.

    Article  Google Scholar 

  29. Q. Chen, H. Wang, X. Tang, Z. Ba, X. Zhao, Y. Wang, and H. Deng (2021). J. Environ. Chem. Eng. https://doi.org/10.1016/j.jece.2021.106222.

    Article  Google Scholar 

  30. L. Scrimieri, L. Velardi, A. Serra, D. Manno, F. Ferrari, M. Cantarella, and L. Calcagnile (2020). Appl. Phys. A Mater. Sci. Process. https://doi.org/10.1007/s00339-020-04103-2.

    Article  Google Scholar 

  31. P. Sriprang, S. Wongnawa, and O. Sirichote (2014). J. Solgel Sci. Technol. https://doi.org/10.1007/s10971-014-3327-3.

    Article  Google Scholar 

  32. F. Xiao, X. Guo, J. Li, H. Sun, H. Zhang, and W. Wang (2019). Ceram. Int. https://doi.org/10.1016/j.ceramint.2019.03.067.

    Article  Google Scholar 

  33. S. Li, C. Liu, P. Chen, W. Lv, and G. Liu (2020). J. Catal. https://doi.org/10.1016/j.jcat.2019.12.030.

    Article  Google Scholar 

  34. R. M. Mathew, J. John, E. S. Zachariah, J. Jose, T. Titus, R. Abraham, A. Joseph, and V. Thomas (2020). React. Kinet. Mech. Catal. https://doi.org/10.1007/s11144-020-01724-9.

    Article  Google Scholar 

  35. X. Wang, S. Wang, K. Shen, S. He, X. Hou, and F. Chen (2020). J. Mater. Chem. A Mater. https://doi.org/10.1039/c9ta11246d.

    Article  PubMed  PubMed Central  Google Scholar 

  36. S. Hu, R. Tian, Y. Dong, J. Yang, J. Liu, and Q. Chang (2013). Nanoscale. https://doi.org/10.1039/c3nr03893a.

    Article  PubMed  PubMed Central  Google Scholar 

  37. H. Saleem, M. Haneef, and H. Y. Abbasi (2018). Mater. Chem. Phys. https://doi.org/10.1016/j.matchemphys.2017.10.020.

    Article  Google Scholar 

  38. H. Huang, K. K. H. De Silva, G. R. A. Kumara, and M. Yoshimura (2018). Sci. Rep. https://doi.org/10.1038/s41598-018-25194-1.

    Article  PubMed  PubMed Central  Google Scholar 

  39. K. Ravishankar, K. M. Shelly, A. Narayanan, and R. Dhamodharan (2019). Rapid. ACS Sustain. Chem. Eng. https://doi.org/10.1021/acssuschemeng.9b02446.

    Article  Google Scholar 

  40. H. Yan, X. Tao, Z. Yang, K. Li, H. Yang, A. Li, and R. Cheng (2014). J. Hazard Mater. https://doi.org/10.1016/j.jhazmat.2014.01.015.

    Article  PubMed  Google Scholar 

  41. L. Y. Zhang, Y. L. Han, J. J. Yang, S. L. Deng, and B. Y. Wang (2021). Appl. Surf. Sci. https://doi.org/10.1016/j.apsusc.2021.149089.

    Article  Google Scholar 

  42. T. D. Nguyen-Phan, V. H. Pham, E. W. Shin, H. D. Pham, S. Kim, J. S. Chung, E. J. Kim, and S. H. Hur (2011). Chem. Eng. https://doi.org/10.1016/j.cej.2011.03.060.

    Article  Google Scholar 

  43. Y. Yan, W. Kuang, L. Shi, X. Ye, Y. Yang, X. Xie, Q. Shi, and S. Tan (2019). J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.10.191.

    Article  Google Scholar 

  44. X. Hu, C. Li, J. Song, S. Zheng, and Z. Sun (2020). J. Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2020.04.035.

    Article  PubMed  Google Scholar 

  45. R. Riaz, M. Ali, H. Anwer, M. J. Ko, and S. H. Jeong (2019). J. Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2019.09.028.

    Article  PubMed  Google Scholar 

  46. S. Stankovich, R. D. Piner, S. B. T. Nguyen, and R. S. Ruoff (2006). Carbon NY. https://doi.org/10.1016/j.carbon.2006.06.004.

    Article  Google Scholar 

  47. A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, and M.P. (2015). Carbon NY. https://doi.org/10.1016/j.carbon.2015.03.037.

    Article  Google Scholar 

  48. P. Ramachandran, C. Y. Lee, R. A. Doong, C. E. Oon, N. T. Kim Thanh, and H. L. Lee (2020). RSC Adv. https://doi.org/10.1039/d0ra02907f.

    Article  PubMed  PubMed Central  Google Scholar 

  49. L. Xu, X. Bai, L. Guo, S. Yang, P. Jin, and L. Yang (2019). Chem. Eng. https://doi.org/10.1016/j.cej.2018.09.172.

    Article  Google Scholar 

  50. V. Strauss, J. T. Margraf, C. Dolle, B. Butz, T. J. Nacken, J. Walter, W. Bauer, W. Peukert, E. Spiecker, T. Clark, and D. M. Guldi (2014). J. Am. Chem. Soc. https://doi.org/10.1021/ja510183c.

    Article  PubMed  Google Scholar 

  51. A. Sharma, T. Gadly, S. Neogy, S. K. Ghosh, and M. Kumbhakar (2017). J. Phys. Chem. Lett. https://doi.org/10.1021/acs.jpclett.7b00170.

    Article  PubMed  Google Scholar 

  52. T. Qiu, J. G. Yang, X. J. Bai, and Y. L. Wang (2019). RSC Adv. https://doi.org/10.1039/c9ra00343f.

    Article  PubMed  PubMed Central  Google Scholar 

  53. S. Wang, H. Gao, L. Fang, Q. Hu, G. Sun, X. Chen, C. Yu, S. Tang, X. Yu, X. Zhao, G. Sun, and H. Yang (2021). Chem. Eng. J. Adv. https://doi.org/10.1016/j.ceja.2021.100089.

    Article  Google Scholar 

  54. Y. Hu, X. Xie, X. Wang, Y. Wang, Y. Zeng, D. Y. H. Pui, and J. Sun (2018). Appl. Surf. Sci. https://doi.org/10.1016/j.apsusc.2018.01.104.

    Article  Google Scholar 

  55. K. P. Shejale, D. Laishram, R. Gupta, and R. K. Sharma (2018). ChemistrySelect. https://doi.org/10.1002/slct.201800988.

    Article  Google Scholar 

  56. N. M. El-Shafai, M. E. El-Khouly, M. El-Kemary, M. S. Ramadan, A. S. Derbalah, and M. S. Masoud (2019). J. Ind. Eng. Chem. https://doi.org/10.1016/j.jiec.2018.09.045.

    Article  Google Scholar 

  57. A. B. D. Nandiyanto, R. Oktiani, and R. Ragadhita (2019). Indones. J. Sci. Technol. https://doi.org/10.17509/ijost.v4i1.15806.

    Article  Google Scholar 

  58. H. Bao, H. Zhang, G. Liu, Y. Li, and W. Cai (2017). Langmuir. https://doi.org/10.1021/acs.langmuir.7b00298.

    Article  PubMed  PubMed Central  Google Scholar 

  59. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus (2009). Phys. Rep. https://doi.org/10.1016/j.physrep.2009.02.003.

    Article  Google Scholar 

  60. R. M. Mathew, E. S. Zachariah, J. Jose, T. Thomas, J. John, T. Titus, N. G. Unni, S. Mathew, A. Mujeeb, and V. Thomas (2020). Appl. Phys. A Mater. Sci. Process. https://doi.org/10.1007/s00339-020-04014-2.

    Article  Google Scholar 

  61. J. F. Moulder, W. F. Stickle, P. E. Sobol and K.D. Bomben, in J. Chastain (ed.), Handbook of X-ray Photoelectron Spectroscopy A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer Corporation, 1992), p.261

  62. P. Wang, G. Yin, Q. Bi, X. Huang, X. Du, W. Zhao, and F. Huang (2018). Chem. Cat. Chem. https://doi.org/10.1002/cctc.201800476.

    Article  PubMed  Google Scholar 

  63. I. Sargin, G. Yanalak, G. Arslan, and I. H. Patir (2019). Int. J. Hydrog. Energy. https://doi.org/10.1016/j.ijhydene.2019.06.168.

    Article  Google Scholar 

  64. F. Zheng, Z. Wang, J. Chen, and S. Li (2014). RSC Adv. https://doi.org/10.1039/c4ra02707h.

    Article  Google Scholar 

  65. X. Chen and C. Burda (2004). J. Phys. Chem. B https://doi.org/10.1021/jp0469160.

    Article  PubMed  Google Scholar 

  66. V. D. Chinh, A. Broggi, L. di Palma, M. Scarsella, G. Speranza, G. Vilardi, and P. N. Thang (2018). J. Electron Mater. https://doi.org/10.1007/s11664-017-6036-1.

    Article  Google Scholar 

  67. L. Dash, R. Biswas, R. Ghosh, V. Kaur, B. Banerjee, T. Sen, R. A. Patil, Y. R. Ma, and K. K. Haldar (2020). J. Photochem. Photobiol. A Chem. https://doi.org/10.1016/j.jphotochem.2020.112682.

    Article  Google Scholar 

  68. I. Iatsunskyi, G. Gottardi, V. Micheli, R. Canteri, E. Coy, and M. Bechelany (2021). Appl. Surf. Sci. https://doi.org/10.1016/j.apsusc.2020.148603.

    Article  Google Scholar 

  69. G. Cheng, X. Liu, X. Song, X. Chen, W. Dai, R. Yuan, and X. Fu (2020). Appl. Catal. B. https://doi.org/10.1016/j.apcatb.2020.119196.

    Article  Google Scholar 

  70. M. Al-Hashem, S. Akbar, and P. Morris (2019). Sens. Actuators B Chem. https://doi.org/10.1016/j.snb.2019.126845.

    Article  Google Scholar 

  71. N. Hamamoto, T. Tatsumi, M. Takao, T. Toyao, Y. Hinuma, K. I. Shimizu, and T. Kamachi (2021). J. Phys. Chem. C. https://doi.org/10.1021/acs.jpcc.0c09614.

    Article  Google Scholar 

  72. C. Zhang, G. Liu, X. Geng, K. Wu, and M. Debliquy (2020). Sens. Actuators A Phys. https://doi.org/10.1016/j.sna.2020.112026.

    Article  PubMed  PubMed Central  Google Scholar 

  73. X. Pan, M. Q. Yang, X. Fu, N. Zhang, and Y. J. Xu (2013). Nanoscale. https://doi.org/10.1039/c3nr00476g.

    Article  PubMed  Google Scholar 

  74. L. S. Li and L. Xu (2020). J. Photochem. Photobiol. A Chem. https://doi.org/10.1016/j.jphotochem.2020.112772.

    Article  Google Scholar 

  75. Y. Park, J. Yoo, B. Lim, W. Kwon, and S. W. Rhee (2016). J. Mater. Chem. A Mater. https://doi.org/10.1039/c6ta04813g.

    Article  PubMed  PubMed Central  Google Scholar 

  76. X. Feng, P. Wang, J. Hou, J. Qian, Y. Ao, and C. Wang (2018). J. Hazard Mater. https://doi.org/10.1016/j.jhazmat.2018.03.013.

    Article  PubMed  Google Scholar 

  77. M. Thommes (2010). Chem. Ing. Tech. https://doi.org/10.1002/cite.201000064.

    Article  Google Scholar 

  78. W. Zhu, J. Mi, Y. Fu, D. Cui, and C. Lü (2021). Appl. Surf. Sci. https://doi.org/10.1016/j.apsusc.2020.148087.

    Article  Google Scholar 

  79. G. Cheng, F. Xu, J. Xiong, F. Tian, J. Ding, F. J. Stadler, and R. Chen (2016). Adv. Powder Technol. https://doi.org/10.1016/j.apt.2016.06.026.

    Article  Google Scholar 

  80. H. Liu, D. Yu, T. Sun, H. Du, W. Jiang, Y. Muhammad, and L. Huang (2019). Appl. Surf. Sci. https://doi.org/10.1016/j.apsusc.2018.12.162.

    Article  Google Scholar 

  81. T. Teymoorian, N. Hashemi, M. H. Mousazadeh, and Z. Entezarian (2021). SN Appl. Sci. https://doi.org/10.1007/s42452-021-04287-z.

    Article  Google Scholar 

  82. S. Sun, P. Song, J. Cui, and S. Liang (2019). Catal. Sci. Technol. https://doi.org/10.1039/c9cy01020c.

    Article  Google Scholar 

  83. Q. Hu and Z. Zhang (2019). J. Mol. Liq. https://doi.org/10.1016/j.molliq.2019.01.005.

    Article  Google Scholar 

  84. X. Guo and J. Wang (2019). J. Mol. Liq. https://doi.org/10.1016/j.molliq.2019.111850.

    Article  Google Scholar 

  85. A. H. Jawad and A. S. Abdulhameed (2020). Energy Ecol. Environ. https://doi.org/10.1007/s40974-020-00177-z.

    Article  Google Scholar 

  86. M. Mahmood-Ul-Hassan, M. Yasin, M. Yousra, R. Ahmad, and S. Sarwar (2018). Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-018-1300-3.

    Article  Google Scholar 

  87. M. Maruthapandi, V. B. Kumar, and A. Gedanken (2018). ACS Omega https://doi.org/10.1021/acsomega.8b00304.

    Article  PubMed  PubMed Central  Google Scholar 

  88. W. Shi, F. Guo, H. Wang, C. Liu, Y. Fu, S. Yuan, H. Huang, Y. Liu, and Z. Kang (2018). Appl. Surf. Sci. https://doi.org/10.1016/j.apsusc.2017.10.099.

    Article  Google Scholar 

  89. K. C. Lai, L. Y. Lee, B. Y. Z. Hiew, S. Thangalazhy-Gopakumar, and S. Gan (2020). Bioresour. Technol. https://doi.org/10.1016/j.biortech.2020.123296.

    Article  PubMed  Google Scholar 

  90. P. K. Jaseela, J. Garvasis, and A. Joseph (2019). J. Mol. Liq. https://doi.org/10.1016/j.molliq.2019.110908.

    Article  Google Scholar 

  91. T. W. Weber, R. K. Chakravorti, and R. K. Chakravorti (1974). AIChE J. https://doi.org/10.1002/aic.690200204.

    Article  Google Scholar 

  92. W. Yao, X. Wang, Y. Liang, S. Yu, P. Gu, Y. Sun, C. Xu, J. Chen, T. Hayat, A. Alsaedi, and X. Wang (2018). Chem. Eng. https://doi.org/10.1016/j.cej.2017.09.011.

    Article  Google Scholar 

  93. S. Agarwal, N. Sadeghi, I. Tyagi, V. K. Gupta, and A. Fakhri (2016). J. Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2016.06.029.

    Article  PubMed  Google Scholar 

  94. I. Anastopoulos and G. Z. Kyzas (2016). J. Mol. Liq. https://doi.org/10.1016/j.molliq.2016.02.059.

    Article  Google Scholar 

  95. E. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D. O. Sulistiono, and D. Prasetyoko (2020). Mater. Today Chem. https://doi.org/10.1016/j.mtchem.2019.100233.

    Article  Google Scholar 

  96. M. Ngabura, S. A. Hussain, W. A. W. A. Ghani, M. S. Jami, and Y. P. Tan (2018). J. Environ. Chem. Eng. https://doi.org/10.1016/j.jece.2018.03.052.

    Article  Google Scholar 

  97. S. V. Mousavi, A. Bozorgian, N. Mokhtari, M. A. Gabris, H. Rashidi Nodeh, and W. A. Wan Ibrahim (2019). Microchem. J. https://doi.org/10.1016/j.microc.2018.11.048.

    Article  Google Scholar 

  98. Y. Gao, S. Q. Deng, X. Jin, S. L. Cai, S. R. Zheng, and W. G. Zhang (2019). Chem. Eng. https://doi.org/10.1016/j.cej.2018.09.124.

    Article  Google Scholar 

  99. S. Wang, H. Gao, L. Fang, Q. Hu, G. Sun, X. Chen, C. Yu, S. Tang, X. Yu, X. Zhao, G. Sun, and H. Yang (2021). Chem. Eng. Adv. https://doi.org/10.1016/j.ceja.2021.100089.

    Article  Google Scholar 

  100. C. H. Nguyen, C. C. Fu, and R. S. Juang (2018). J. Clean Prod. https://doi.org/10.1016/j.jclepro.2018.08.110.

    Article  Google Scholar 

  101. H. Safardoust-Hojaghan and M. Salavati-Niasari (2017). J. Clean Prod. https://doi.org/10.1016/j.jclepro.2017.01.169.

    Article  Google Scholar 

  102. M. K. Ahmed, M. E. El-Naggar, A. Aldalbahi, M. H. El-Newehy, and A. A. Menazea (2020). J. Mol. Liq. https://doi.org/10.1016/j.molliq.2020.113794.

    Article  Google Scholar 

  103. I. Mironyuk, T. Tatarchuk, H. Vasylyeva, M. Naushad, and I. Mykytyn (2019). J. Environ. Chem. Eng. https://doi.org/10.1016/j.jece.2019.103430.

    Article  Google Scholar 

  104. M. Abbas (2020). J. Water Reuse. Desalin. https://doi.org/10.2166/wrd.2020.038.

    Article  Google Scholar 

  105. S. Song, K. Wu, H. Wu, J. Guo, and L. Zhang (2019). RSC Adv. https://doi.org/10.1039/c9ra00168a.

    Article  PubMed  PubMed Central  Google Scholar 

  106. P. Alizadeh Eslami, M. A. Kamboh, H. Rashidi Nodeh, and W. A. Wan Ibrahim (2018). Appl. Organomet. Chem. https://doi.org/10.1002/aoc.4331.

    Article  Google Scholar 

  107. R. K. Das, J. P. Kar, and S. Mohapatra (2016). Ind. Eng. Chem. Res. https://doi.org/10.1021/acs.iecr.6b00792.

    Article  Google Scholar 

  108. C. S. Tshangana, A. A. Muleja, A. T. Kuvarega, T. J. Malefetse, and B. B. Mamba (2021). J. Water Process. Eng. https://doi.org/10.1016/j.jwpe.2021.102249.

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Science Engineering Research Board (SERB) (EMR/2017/000178) (Govt. of India) Department of Science and Technology (DST) (SR/FST/college 202/2014), and KSCSTE (607/2015/KSCSTE) Government of Kerala for financial assistance in the form of research grants. Raji Mary Mathew acknowledge University Grant commission to provide research grant in the form of Savitribai Jyotirao Phule scholarship (UGCES-22-GE-KER-F-SJSGC-2629). The authors are thankful to Central laboratory for instrumentation and facility (CLIF) University of Kerala, Sophisticated analytical and instrument facility (SAIF-DST) MG university Kottayam, and Sophisticated Test and Instrumentation Centre Cochin university of science and technology for the instrumentation support.

Author information

Authors and Affiliations

Authors

Contributions

RMM: Found the research gap in water treatment process and put forward the idea for the experimental investigation and wrote the manuscript. JJ: Experimental analysis and arranged the figures in the manuscript. ESZ: Formatted the manuscript. Dr VT: Supervised the research.

Corresponding author

Correspondence to Vinoy Thomas.

Ethics declarations

Competing interests

The authors state that there is no conflict of interest in financial/non-financial or personal consideration.

Ethical Approval

The manuscript does not include the study of human/animal. The declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15957 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, R.M., Jose, J., Zachariah, E.S. et al. Defect Induced Ultrafast Organic Dye Adsorption by Amorphous Titanium Dioxide/Phosphorus-Doped Carbon Nanodot Hybrid. J Clust Sci 35, 1045–1062 (2024). https://doi.org/10.1007/s10876-023-02529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02529-1

Keywords

Navigation