Skip to main content

Advertisement

Log in

Effects of elevated remnant cholesterol on outcomes of acute ischemic stroke patients receiving mechanical thrombectomy

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Objective: Large cohort studies provided evidence that elevated remnant cholesterol (RC) was an important risk factor for ischemic stroke. However, the association between high RC and clinical outcomes in acute ischemic stroke (AIS) individuals was still undetermined. Methods: This retrospective study enrolled 165 AIS patients undergoing mechanical thrombectomy in one tertiary stroke center. We divided patients into two groups based on the median of their RC levels (0.49 mmol/L). The modified Rankin Scale (mRS) was used to evaluate the primary outcome 90 days after the onset of symptoms. The mRS scores ≤ 2 and ≤ 1 at 90 days were deemed as favorable and excellent outcomes, respectively. Results: In the overall AIS patients undergoing mechanical thrombectomy, there was no obvious distinction between the high and low RC group at 90-day favorable outcome (41.0% vs. 47.1%, P = 0.431) or excellent outcome (23.1% vs. 31.0%, P = 0.252). In the subgroup analysis stratified by stroke etiology, non-large artery atherosclerosis (non-LAA) stroke patients yielded with less favorable or excellent prognosis in the high RC group (26.8% vs. 46.8%, adjusted OR = 0.31, 95%CI: 0.11–0.85, P = 0.023; or 12.2% vs. 29.0%, adjusted OR = 0.18, 95%CI: 0.04–0.80, P = 0.024, respectively.). Post hoc power analyses indicated that the power was sufficient for favorable outcome (80.38%) and excellent outcome (88.72%) in non-LAA stroke patients. Additionally, RC can enhance the risk prediction value of a poor outcome (mRS scores 3–6) based on traditional risk indicators (including age, initial NIHSS score, operative duration, and neutrophil-to-lymphocyte ratio) for non-LAA stroke patients (AUC = 0.86, 95%CI: 0.79–0.94, P < 0.001). Conclusion: In AIS patients undergoing mechanical thrombectomy, elevated RC was independently related to poor outcome for non-LAA stroke patients, but not to short-term prognosis of LAA stroke patients.

Highlights

The levels of RC in LAA stroke patients were greater than that in non-LAA stroke patients.

High RC was independently associated with poor outcomes of non-LAA stroke patients after mechanical thrombectomy.

High RC was a new predictor for poor outcomes of non-LAA stroke patients after mechanical thrombectomy.

High RC was not related to short-term prognosis of LAA stroke patients after mechanical thrombectomy.

The study suggested that we should not only pay attention to the effects of dyslipidemia on LAA stroke, but also attach importance to the influence of hyperlipidemia in the prevention and therapy of non-LAA stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article. Further enquiries can be directed to the corresponding author.

References

  1. Qian S, You S, Sun Y, Wu Q, Wang X, Tang W, Dong X, Liu CF, Xu T, Cao Y, Zhong C (2021) Remnant cholesterol and common carotid artery Intima-Media thickness in patients with ischemic Stroke. Circ Cardiovasc Imaging 14(4):e10953. https://doi.org/10.1161/CIRCIMAGING.120.010953

    Article  Google Scholar 

  2. Gronholdt ML, Nordestgaard BG, Wiebe BM, Wilhjelm JE, Sillesen H (1998) Echo-lucency of computerized ultrasound images of carotid atherosclerotic plaques are associated with increased levels of triglyceride-rich lipoproteins as well as increased plaque lipid content. Circulation 97(1):34–40. https://doi.org/10.1161/01.cir.97.1.34

    Article  CAS  PubMed  Google Scholar 

  3. O’Donnell MJ, Mcqueen M, Sniderman A, Pare G, Wang X, Hankey GJ et al (2022) Association of lipids, lipoproteins, and apolipoproteins with Stroke subtypes in an international case control study (INTERSTROKE). J Stroke 24(2):224–235. https://doi.org/10.5853/jos.2021.02152

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lawler PR, Kotrri G, Koh M, Goodman SG, Farkouh ME, Lee DS, Austin PC, Udell JA, Ko DT (2020) Real-world risk of cardiovascular outcomes associated with hypertriglyceridaemia among individuals with atherosclerotic Cardiovascular Disease and potential eligibility for emerging therapies. Eur Heart J 41(1):86–94. https://doi.org/10.1093/eurheartj/ehz767

    Article  PubMed  Google Scholar 

  5. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, Doyle RJ, Juliano RA, Jiao L, Granowitz C, Tardif JC, Ballantyne CM (2019) Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med 380(1):11–22. https://doi.org/10.1056/NEJMoa1812792

    Article  CAS  PubMed  Google Scholar 

  6. Freiberg JJ, Tybjaerg-Hansen A, Jensen JS, Nordestgaard BG (2008) Nonfasting triglycerides and risk of ischemic Stroke in the general population. JAMA 300(18):2142–2152. https://doi.org/10.1001/jama.2008.621

    Article  CAS  PubMed  Google Scholar 

  7. Wadstrom BN, Wulff AB, Pedersen KM, Jensen GB, Nordestgaard BG (2022) Elevated remnant cholesterol increases the risk of peripheral artery Disease, Myocardial Infarction, and ischaemic Stroke: a cohort-based study, Eur. Heart J 43(34):3258–3269. https://doi.org/10.1093/eurheartj/ehab705

    Article  CAS  Google Scholar 

  8. Chen Y, Li G, Guo X, Ouyang N, Li Z, Ye N, Yu S, Yang H, Sun Y (2021) The effects of calculated remnant-like particle cholesterol on Incident Cardiovascular Disease: insights from a General Chinese Population. J Clin Med 10(15). https://doi.org/10.3390/jcm10153388

  9. Varbo A, Nordestgaard BG (2019) Remnant cholesterol and risk of ischemic Stroke in 112,512 individuals from the general population. Ann Neurol 85(4):550–559. https://doi.org/10.1002/ana.25432

    Article  CAS  PubMed  Google Scholar 

  10. Li W, Huang Z, Fang W, Wang X, Cai Z, Chen G, Wu W, Chen Z, Wu S, Chen Y (2022) Remnant cholesterol variability and incident ischemic Stroke in the general population. Stroke 53(6):1934–1941. https://doi.org/10.1161/STROKEAHA.121.037756

    Article  CAS  PubMed  Google Scholar 

  11. Shao Q, Yang Z, Wang Y, Li Q, Han K, Liang J, Shen H, Liu X, Zhou Y, Ma X, Wang Z (2022) Elevated remnant cholesterol is associated with adverse cardiovascular outcomes in patients with acute coronary syndrome. J Atheroscler Thromb 29(12):1808–1822. https://doi.org/10.5551/jat.63397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Langsted A, Madsen CM, Nordestgaard BG (2020) Contribution of remnant cholesterol to cardiovascular risk. J Intern Med 288(1):116–127. https://doi.org/10.1111/joim.13059

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Yan K, Zhu P, Xu J, Tang X, Li Y, Yang W, Qiao S, Yang Y, Gao R, Yuan J, Zhao X (2023) Association between multiple inflammatory biomarkers and remnant cholesterol levels in patients with percutaneous coronary intervention: a large-scale real-world study. Nutr Metab Cardiovasc Dis. https://doi.org/10.1016/j.numecd.2023.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vazquez-Madrigal C, Lopez S, Grao-Cruces E, Millan-Linares MC, Rodriguez-Martin NM, Martin ME, Alba G, Santa-Maria C, Bermudez B (2020) Montserrat-De, Dietary fatty acids in postprandial triglyceride-rich lipoproteins modulate human monocyte-derived dendritic cell maturation and activation. Nutrients 12(10). https://doi.org/10.3390/nu12103139

  15. Toscano R, Millan-Linares MC, Lemus-Conejo A, Claro C, Sanchez-Margalet V, Montserrat-De LPS (2020) Postprandial triglyceride-rich lipoproteins promote M1/M2 microglia polarization in a fatty-acid-dependent manner. J Nutr Biochem 75:108248. https://doi.org/10.1016/j.jnutbio.2019.108248

    Article  CAS  PubMed  Google Scholar 

  16. Lee LL, Aung HH, Wilson DW, Anderson SE, Rutledge JC, Rutkowsky JM (2017) Triglyceride-rich lipoprotein lipolysis products increase blood-brain barrier transfer coefficient and induce astrocyte lipid droplets and cell stress. Am J Physiol Cell Physiol 312(4):C500–C516. https://doi.org/10.1152/ajpcell.00120.2016

    Article  PubMed  PubMed Central  Google Scholar 

  17. Boulet MM, Cheillan D, Di Filippo M, Buisson C, Michalski MC, Moulin P, Calzada C (2020) Large triglyceride-rich lipoproteins from fasting patients with type 2 Diabetes activate platelets. Diabetes Metab 46(1):54–60. https://doi.org/10.1016/j.diabet.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  18. Xu N, Dahlback B, Ohlin AK, Nilsson A (1998) Association of vitamin K-dependent coagulation proteins and C4b binding protein with triglyceride-rich lipoproteins of human plasma. Arterioscler Thromb Vasc Biol 18(1):33–39. https://doi.org/10.1161/01.atv.18.1.33

    Article  CAS  PubMed  Google Scholar 

  19. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM et al (2016) Endovascular thrombectomy after large-vessel ischaemic Stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387(10029):1723–1731. https://doi.org/10.1016/S0140-6736

    Article  PubMed  Google Scholar 

  20. Adams HJ, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh ER (1993) Classification of subtype of acute ischemic Stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24(1):35–41. https://doi.org/10.1161/01.str.24.1.35

    Article  PubMed  Google Scholar 

  21. Kim JH, Choi KH, Kang KW, Kim JT, Choi SM, Lee SH, Park MS, Kim BC, Kim MK, Cho KH (2019) Impact of visceral adipose tissue on clinical outcomes after acute ischemic Stroke. Stroke 50(2):448–454. https://doi.org/10.1161/STROKEAHA.118.023421

    Article  PubMed  Google Scholar 

  22. Nordestgaard BG (2016) Triglyceride-Rich lipoproteins and atherosclerotic Cardiovascular Disease: new insights from epidemiology, genetics, and biology. Circ Res 118(4):547–563. https://doi.org/10.1161/CIRCRESAHA.115.306249

    Article  CAS  PubMed  Google Scholar 

  23. Navarese EP, Vine D, Proctor S, Grzelakowska K, Berti S, Kubica J, Raggi P (2023) Independent causal effect of remnant cholesterol on atherosclerotic cardiovascular outcomes: a mendelian randomization study. Arterioscler Thromb Vasc Biol. https://doi.org/10.1161/ATVBAHA.123.319297

    Article  PubMed  Google Scholar 

  24. Li H, Miao S, Chen L, Liu B, Li YB, Duan RS (2023) Association and mediating mechanism between remnant cholesterol and first-ever Stroke among the Chinese general population. Front Neurosci 17:1161367. https://doi.org/10.3389/fnins.2023.1161367

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bernelot MS, Verweij SL, Schnitzler JG, Stiekema L, Bos M, Langsted A, Kuijk C, Bekkering S, Voermans C, Verberne HJ, Nordestgaard BG, Stroes E, Kroon J (2017) Remnant cholesterol elicits arterial wall inflammation and a multilevel cellular immune response in humans. Arterioscler Thromb Vasc Biol 37(5):969–975. https://doi.org/10.1161/ATVBAHA.116.308834

    Article  CAS  Google Scholar 

  26. Yang DG, Liu L, Zhou SH, Ma MF, Wen T (2011) Remnant-like lipoproteins may accelerate endothelial progenitor cells senescence through inhibiting telomerase activity via the reactive oxygen species-dependent pathway. Can J Cardiol 27(5):628–634. https://doi.org/10.1016/j.cjca.2010.12.075

    Article  CAS  PubMed  Google Scholar 

  27. Varela LM, Bermudez B, Ortega-Gomez A, Lopez S, Sanchez R, Villar J, Anguille C, Muriana FJ, Roux P, Abia R (2014) Postprandial triglyceride-rich lipoproteins promote invasion of human coronary artery smooth muscle cells in a fatty-acid manner through PI3k-Rac1-JNK signaling, Mol. Nutr Food Res 58(6):1349–1364. https://doi.org/10.1002/mnfr.201300749

    Article  CAS  Google Scholar 

  28. Gao S, Xu H, Ma W, Yuan J, Yu M (2022) Remnant cholesterol predicts risk of cardiovascular events in patients with Myocardial Infarction with nonobstructive coronary arteries. J Am Heart Assoc 11(10):e24366. https://doi.org/10.1161/JAHA.121.024366

    Article  Google Scholar 

  29. Zhang X, Yan S, Zhong W, Yu Y, Lou M (2021) Early NT-ProBNP (N-Terminal probrain natriuretic peptide) elevation predicts malignant edema and death after reperfusion therapy in acute ischemic Stroke patients. Stroke 52(2):537–542. https://doi.org/10.1161/STROKEAHA.120.029593

    Article  CAS  PubMed  Google Scholar 

  30. Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS et al (2020) Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci 23(2):194–208. https://doi.org/10.1038/s41593-019-0566-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wei W, Zhang L, Xin W, Pan Y, Tatenhorst L, Hao Z, Gerner ST, Huber S, Juenemann M, Butz M, Huttner HB, Bahr M, Fitzner D, Jia F, Doeppner TR (2023) TREM2 regulates microglial lipid droplet formation and represses post-ischemic brain injury. Biomed Pharmacother 170:115962. https://doi.org/10.1016/j.biopha.2023.115962

    Article  CAS  PubMed  Google Scholar 

  32. Hao J, Feng Y, Xu X, Li L, Yang K, Dai G, Gao W, Zhang M, Fan Y, Yin T, Wang J, Yang B, Jiao L, Zhang L (2022) Plasma lipid mediators associate with clinical outcome after successful endovascular thrombectomy in patients with acute ischemic Stroke. Front Immunol 13:917974. https://doi.org/10.3389/fimmu.2022.917974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sandesara PB, Virani SS, Fazio S, Shapiro MD (2019) The forgotten lipids: triglycerides, remnant cholesterol, and atherosclerotic Cardiovascular Disease risk. Endocr Rev 40(2):537–557. https://doi.org/10.1210/er.2018-00184

    Article  PubMed  Google Scholar 

  34. Varbo A, Benn M, Tybjaerg-Hansen A, Nordestgaard BG (2013) Elevated remnant cholesterol causes both low-grade inflammation and Ischemic Heart Disease, whereas elevated low-density lipoprotein cholesterol causes Ischemic Heart Disease without inflammation. Circulation 128(12):1298–1309. https://doi.org/10.1161/CIRCULATIONAHA.113.003008

    Article  CAS  PubMed  Google Scholar 

  35. Ding Y, Wang L, Sun J, Shi Y, Li G, Luan X, Zheng G, Zhang G (2022) Remnant cholesterol and dyslipidemia are risk factors for Guillain-Barre syndrome and severe Guillain-Barre syndrome by promoting monocyte activation. Front Immunol 13:946825. https://doi.org/10.3389/fimmu.2022.946825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ortega-Gomez A, Varela LM, Lopez S, Montserrat DLPS, Sanchez R, Muriana F, Bermudez B, Abia R (2017) Postprandial triglyceride-rich lipoproteins promote lipid accumulation and apolipoprotein B-48 receptor transcriptional activity in human circulating and murine bone marrow neutrophils in a fatty acid-dependent manner. Mol Nutr Food Res 61(9). https://doi.org/10.1002/mnfr.201600879

  37. Gao F, Chen C, Lyu J, Zheng J, Ma XC, Yuan XY, Huo K, Han JF (2018) Association between platelet distribution width and poor outcome of acute ischemic Stroke after intravenous thrombolysis. Neuropsychiatr Dis Treat 14:2233–2239. https://doi.org/10.2147/NDT.S170823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reiner Z (2017) Hypertriglyceridaemia and risk of coronary artery Disease. Nat Rev Cardiol 14(7):401–411. https://doi.org/10.1038/nrcardio.2017.31

    Article  CAS  PubMed  Google Scholar 

  39. Barakzie A, Jansen A, Ten CH, de Maat M (2023) Coagulation biomarkers for ischemic Stroke. Res Pract Thromb Haemost 7(4):100160. https://doi.org/10.1016/j.rpth.2023.100160

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vallejo-Vaz AJ, Fayyad R, Boekholdt SM, Hovingh GK, Kastelein JJ, Melamed S, Barter P, Waters DD, Ray KK (2018) Triglyceride-Rich lipoprotein cholesterol and risk of cardiovascular events among patients receiving statin therapy in the TNT trial. Circulation 138(8):770–781. https://doi.org/10.1161/CIRCULATIONAHA.117.032318

    Article  CAS  PubMed  Google Scholar 

  41. Miller PE, Martin SS, Joshi PH, Jones SR, Massaro JM, D’Agostino RB, Sponseller CA, Toth PP (2016) Pitavastatin 4 mg provides significantly Greater reduction in remnant lipoprotein cholesterol compared with Pravastatin 40 mg: results from the short-term phase IV PREVAIL US Trial in patients with primary hyperlipidemia or mixed dyslipidemia. Clin Ther 38(3):603–609. https://doi.org/10.1016/j.clinthera.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  42. Tsunoda F, Asztalos IB, Horvath KV, Steiner G, Schaefer EJ, Asztalos BF (2016) Fenofibrate, HDL, and Cardiovascular Disease in Type-2 Diabetes: the DAIS trial. Atherosclerosis 247:35–39. https://doi.org/10.1016/j.atherosclerosis.2016.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ballantyne CM, Bays HE, Philip S, Doyle RJ, Braeckman RA, Stirtan WG, Soni PN, Juliano RA (2016) Icosapent ethyl (eicosapentaenoic acid ethyl ester): effects on remnant-like particle cholesterol from the MARINE and ANCHOR studies. Atherosclerosis 253:81–87. https://doi.org/10.1016/j.atherosclerosis.2016.08.005

    Article  CAS  PubMed  Google Scholar 

  44. Bays HE, Hallen J, Vige R, Fraser D, Zhou R, Hustvedt SO, Orloff DG, Kastelein JJ (2016) Icosabutate for the treatment of very high triglycerides: a placebo-controlled, randomized, double-blind, 12-week clinical trial. J Clin Lipidol 10(1):181–191. https://doi.org/10.1016/j.jacl.2015.10.012

    Article  PubMed  Google Scholar 

  45. Toth PP, Hamon SC, Jones SR, Martin SS, Joshi PH, Kulkarni KR, Banerjee P, Hanotin C, Roth EM, Mckenney JM (2016) Effect of alirocumab on specific lipoprotein non-high-density lipoprotein cholesterol and subfractions as measured by the vertical auto profile method: analysis of 3 randomized trials versus placebo. Lipids Health Dis 15:28. https://doi.org/10.1186/s12944-016-0197-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Olkkonen VM, Sinisalo J, Jauhiainen M (2018) New medications targeting triglyceride-rich lipoproteins: can inhibition of ANGPTL3 or apoC-III reduce the residual cardiovascular risk? Atherosclerosis 272. 27–32. https://doi.org/10.1016/j.atherosclerosis.2018.03.019

Download references

Funding

This work was supported by grants from the Institutional Foundation of The First Affiliated Hospital of Xi’an Jiaotong University (2022MS-32) and Natural Science Foundation of Shaanxi Province (2022JQ-987).

Author information

Authors and Affiliations

Authors

Contributions

ML, MW and GL conceived, designed, and drafted the manuscript. MW, RZ, YZ, WC, XL, XW, JH, LL, and QW collected the data and edited the figures. All authors revised the article and approved the submitted version.

Corresponding authors

Correspondence to Guogang Luo or Meng Wei.

Ethics declarations

Statements and declarations

All authors report no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, M., Zhao, Y. et al. Effects of elevated remnant cholesterol on outcomes of acute ischemic stroke patients receiving mechanical thrombectomy. J Thromb Thrombolysis 57, 390–401 (2024). https://doi.org/10.1007/s11239-023-02939-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-023-02939-y

Keywords

Navigation