Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In-silico Binding, Stability, Pharmacokinetics, and Toxicity Studies on Natural (-)-ambrox Metabolites as Binding Ligands to Luminal B and Triple-negative/basal-like Proteins for Breast Cancer Therapy

Author(s): Abdullah Haikal*, Neelaveni Thangavel, Mohammed Albratty, Asim Najmi, Hassan Ahmed Al Hazmi, Durgaramani Sivadasan, Gulrana Khuwaja and Israa M. Shamkh*

Volume 21, Issue 9, 2024

Published on: 04 January, 2024

Page: [1569 - 1581] Pages: 13

DOI: 10.2174/0115701808253017231016041343

Price: $65

Abstract

Background: Breast cancer is the most prevalent malignant tumour in women of all races and is the second largest cause of cancer-related death in the majority of races. Based on the pattern of gene expression, five intrinsic or molecular classifications for breast tumours are frequently used. Our research, which is presently being utilized to treat breast cancer and has the potential to significantly change the course of the illness, is focused on two of them: luminal B breast cancer and triplenegative/ basal-like breast cancer.

Methods: Screening a database containing millions of drug molecules or phytochemicals has become rapid and simple due to computer-aided drug design (CADD) techniques. In the current work, nine natural compounds were screened for ambrox from a sperm whale using docking research.

Results: Following docking studies, nine substances were discovered to interact with basal-like and luminal B breast cancer proteins. All nine metabolites, however, adhered to Lipinski's rule of five and had sufficient oral bioavailability. The greatest binding affinities were demonstrated by 13,14,15,16-tetranorlabdane-3-oxo-8,12-diol, 6-β-hydroxy ambrox, 1-α-hydroxy-3-oxoambrox, and 2-α-3-β-dihydroxy ambrox.

Conclusion: Therefore, it can be concluded that research on molecular docking and pharmacological mimics may hasten the discovery of new medications. The use of ambrox metabolites in the treatment of breast cancer also requires future perspectives on their therapeutic use.

Keywords: Ambrox, luminal B, triple-negative, basal-like, breast cancer, molecular docking.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy