Skip to main content
Log in

Exploration of magnetically influenced flow dynamics of a dusty fluid induced by the ramped movement of a thermally active plate

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The study of magnetically influenced flows in conjunction with non-Newtonian dusty fluids finds wide-ranging applications in minerals processing, environmental engineering, and biomedical sciences. These include, but are not limited to, wastewater management, soil remediation and groundwater treatment, removal of contaminants from water or soil, magnetic separation techniques, controlled and site-specific drug delivery, and biomedical diagnostic procedures. This research focuses on the dynamic behaviour of a conducting dusty fluid, modelled using the Casson framework, in the presence of a thermally active plate with ramped movement and the effects of a magnetic field. The model also incorporates several key physical phenomena, including thermal radiation, heat generation, and Newtonian heating wall conditions. To describe the time-dependent flow behaviour mathematically, partial differential equations are employed. Analytical solutions are derived using mathematical approach, notably the Laplace transform (LT). The results, including changes in flow profiles and various physical quantities due to various influencing factors, are depicted through graphs and tables, offering a clear visual representation of the findings. The research concludes that a higher thermal relaxation time parameter significantly improves thermal characteristics. Higher levels of particle concentration parameter correspond to slower fluid flow. Both the heat transfer rate and shearing stress on the plate exhibit temporal variations for a range of physical parameters. The particle concentration parameter has a notable impact on thermal transmission. The study’s findings may be applied in climate modelling, weather prediction, contaminant transport, and studying phenomena such as dust storms, air pollution, and dispersion of volcanic ash clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be available on request.

Abbreviations

\(B_0\) :

Strength of magnetic field (T)

\(c_p\) :

Fluid-phase specific heat at constant pressure (J \(\hbox {kg}^{-1}\hbox {K}^{-1}\))

\(c_s\) :

Dust-phase specific heat at constant pressure (J \(\hbox {kg}^{-1}\hbox {K}^{-1}\))

\(e_{ij}\) :

Shear strain (Pa)

\(e_{\lambda _0}\) :

Planck’s function

g :

Acceleration due to gravity (m \(\hbox {s}^{-2}\))

Gr :

Thermal Grashof number

H :

Heaviside unit step function

\(h_T\) :

Convective heat transfer coefficient (W \(\hbox {m}^{-2}\hbox {K}^{-1}\))

k :

Thermal conductivity (W \(\hbox {m}^{-1}\hbox {K}^{-1}\))

\(k_0\) :

Stokes’ resistance (kg m \(\hbox {s}^{-2}\))

\(K_{\lambda _0}\) :

Absorption coefficient (\(\hbox {m}^{-1}\))

m :

Average mass of a dust particle (kg)

\(M^2\) :

Magnetic parameter

N :

Number density of dust particles

\(p_y\) :

Yield stress (N \(\hbox {m}^{-2}\))

Pr :

Prandtl number

\(q_r\) :

Radiative heat flux (kg \(\hbox {s}^{-3}\))

r :

Correlation coefficient

R :

Particle concentration parameter

Ra :

Radiation parameter

t :

Time (s)

\(t_0\) :

Characteristic time (s)

T :

Fluid-phase temperature (K)

\(T_p\) :

Dust-phase temperature (K)

\(T_\infty \) :

Constant ambient temperature (K)

\(u_0\) :

Reference velocity (m \(\hbox {s}^{-1}\))

u :

Fluid velocity (m \(\hbox {s}^{-1}\))

\(u_1\) :

Dimensionless fluid velocity

(xy):

Cartesian coordinates (m)

\(\alpha _0\) :

Newtonian heating parameter

\(\beta \) :

Casson parameter

\(\beta ^*\) :

Volumetric thermal expansion coefficient (\(\hbox {K}^{-1}\))

\(\gamma _T\) :

Thermal relaxation time (s)

\(\eta \) :

Dimensionless variable

\(\theta \) :

Dimensionless fluid-phase temperature

\(\theta _p\) :

Dimensionless dust-phase temperature

\(\lambda \) :

Thermal radiation wavelength (m)

\(\mu \) :

Plastic dynamic viscosity (kg \(\hbox {m}^{-1}\hbox {s}^{-1}\))

\(\nu \) :

Kinematic viscosity (\(\hbox {m}^2\hbox {s}^{-1}\))

\(\xi \) :

Laplace transform parameter

\(\rho \) :

Fluid-phase density (kg \(\hbox {m}^{-3}\))

\(\rho _p\) :

Dust-phase density (kg \(\hbox {m}^{-3}\))

\(\sigma \) :

Electrical conductivity (\(\Omega ^{-1}\hbox {m}^{-1}\))

\(\sigma _1\) :

Particle relaxation time parameter

\(\tau \) :

Dimensionless time

\(\tau _{ij}\) :

Stress tensor (N \(\hbox {m}^{-2}\))

CC:

Correlation coefficient

DF:

Dusty fluid

LT:

Laplace transform

MHD:

Magnetodydrodynamics

PE:

Probable error

SL:

Sudden lifting

UL:

Uniform lifting

References

  1. Hamid, R.A., Nazar, R., Pop, I.: Numerical solutions for unsteady boundary layer flow of a dusty fluid past a permeable stretching/shrinking surface with particulate viscous effect. Int. J. Numer. Method H. 28, 1374–1391 (2018)

    Article  Google Scholar 

  2. Mahanthesh, B., Shashikumar, N.S., Gireesha, B.J., Animasaun, I.L.: Effectiveness of hall current and exponential heat source on unsteady heat transport of dusty TiO2-EO nanoliquid with non-linear radiative heat. J. Comput. Des. Eng. 6, 551–561 (2019)

    Google Scholar 

  3. Nanjundappa, C.E., Pavithra, A., Shivakuamara, I.S.: Effect of dusty particles on Darcy–Brinkman gravity-driven ferro-thermal-convection in a ferrofluid saturated porous layer with internal heat source: Influence of boundaries. Int. J. Appl. Comput. Math. 7, 21 (2021)

    Article  MathSciNet  Google Scholar 

  4. Radhika, M., Punith Gowda, R.J., Kumar, R.N., Prasannakumara, B.C.: Heat transfer in dusty fluid with suspended hybrid nanoparticles over a melting surface. Heat Transf. 50(3), 2150–2167 (2021)

    Article  Google Scholar 

  5. Mallikarjuna, H.B., Nirmala, T., Punith Gowda, R.J., Manghat, R., Kumar, R.S.V.: Two-dimensional Darcy–Forchheimer flow of a dusty hybrid nanofluid over a stretching sheet with viscous dissipation. Heat Transf. 50(4), 3934–3947 (2021)

    Article  Google Scholar 

  6. Kumar, R.S.V., Punith Gowda, R.J., Kumar, R.N., Radhika, M., Prasannakumara, B.C.: Two-phase flow of dusty fluid with suspended hybrid nanoparticles over a stretching cylinder with modified Fourier heat flux. SN Appl. Sci. 3, 384 (2021)

    Article  Google Scholar 

  7. Islam, M.R., Ferdows, M., Misra, J.C., Murtaza, M.G.: Two-dimensional thin layer convective flow and heat transfer of a dusty fluid on a nonlinear stretching sheet. Multiscale Sci. Eng. 4, 111–118 (2022)

    Article  ADS  Google Scholar 

  8. Dey, D., Chutia, B.: Dusty nanofluid flow with bioconvection past a vertical stretching surface. J. King Saud. Univ. Eng. Sci. 34, 375–380 (2022)

    Google Scholar 

  9. Casson, N.: A flow equation for the pigment oil suspensions of the printing ink type. Rheology of Disperse systems. Pergamon Press, New York (1959)

    Google Scholar 

  10. Mahanthesh, B., Makinde, O.D., Gireesha, B.J., Krupalakshmi, K.L., Animasaun, I.L.: Two-phase flow of dusty Casson fluid with Cattaneo–Christov heat flux and heat source past a cone, wedge and plate. Defect Diffus. Forum. 387, 625–639 (2018)

    Article  Google Scholar 

  11. Mahanthesh, B., Animasaun, I., Rahimi-Gorji, M., Alarifi, I.M.: Quadratic convective transport of dusty Casson and dusty Carreau fluids past a stretched surface with nonlinear thermal radiation, convective condition and non-uniform heat source/sink. Phys. A.: Stat. Mech. Appl. 535, 122471 (2019)

  12. Hady, F.M., Mahdy, A., Mohamed, R.A., Ahmed, S.E., Abo-zaid, O.A.: Unsteady natural convection flow of a dusty non-Newtonian Casson fluid along a vertical wavy plate: numerical approach. J. Braz. Soc. Mech. Sci. Eng. 41, 472 (2019)

    Article  Google Scholar 

  13. Khan, D., Kumam, P., Kumam, W., Suttiarporn, P., Rehman, A.: Relative magnetic field and slipping effect on Casson dusty fluid of two phase fluctuating flow over inclined parallel plate. S. Afr. J. Chem. Eng. 44, 135–146 (2023)

    Google Scholar 

  14. Das, S., Ali, A., Jana, R.N.: Impact of hall currents with buoyancy forces on hydromagnetic reactive Casson fluid flow past a slippery plate in a rotating porous medium. Spec. Top. Rev. Porous Media 11(4), 313–340 (2022)

    Article  Google Scholar 

  15. Das, S., Banu, A.S., Jana, R.N.: Delineating impacts of non-uniform wall temperature and concentration on time-dependent radiation-convection of Casson fluid under magnetic field and chemical reaction. World J. Eng. 18(5), 780–795 (2021)

    Article  CAS  Google Scholar 

  16. Sarwe, D.U., Shanker, B., Mishra, R., Kumar, R.S.V., Shekar, M.N.R.: Simultaneous impact of magnetic and Arrhenius activation energy on the flow of Casson hybrid nanofluid over a vertically moving plate. Int. J. Thermofluid Sci. Technol 8(2), 080202 (2021)

    Google Scholar 

  17. Ali, G., Ali, F., Khan, A., Ganie, A.H., Khan, I.: A generalized magnetohydrodynamic two-phase free convection flow of dusty Casson fluid between parallel plates. Case Stud. Therm. Eng. 29, 101657 (2022)

    Article  Google Scholar 

  18. Raju, C.S.K., Raju, S.V.S.R., Upadhya, S.M., Ahammad, N.A., Shah, N.A., Botmart, T.: A numerical study of swirling axisymmetric flow characteristics in a cylinder with suspended PEG based magnetite and oxides nanoparticles. AIMS Math. 8(2), 4575–4595 (2023)

    Article  MathSciNet  Google Scholar 

  19. Cogley, A.C., Vincenti, W.C., Gilles, S.E.: Differential approximation for radiation transfer in a non-grey gas near equilibrium. AIAA J. 6(3), 551–555 (1968)

    Article  ADS  Google Scholar 

  20. Pandya, N., Yadav, R.K., Shukla, A.K.: Combined effects of Soret-Dufour, radiation and chemical reaction on unsteady MHD flow of dusty fluid over inclined porous plate embedded in porous medium. Int. J. Adv. Appl. Math. Mech. 5, 49–58 (2017)

    MathSciNet  Google Scholar 

  21. Ghadikolaei, S., Hosseinzadeh, K., Ganji, D.: Numerical study on magnetohydrodynic CNTs-water nanofluids as a micropolar dusty fluid influenced by non-linear thermal radiation and Joule heating effect. Powder Technol. 340, 389–399 (2018)

    Article  CAS  Google Scholar 

  22. Mahanthesh, B., Mackolil, J., Radhika, M., Al-Kouz, W.: Significance of quadratic thermal radiation and quadratic convection on boundary layer two-phase flow of a dusty nano liquid past a vertical plate. Int. Commun. Heat Mass Transf. 120, 105029 (2021)

    Article  CAS  Google Scholar 

  23. Krishna, M.V.: Hall and ion slip effects on radiative MHD rotating flow of Jeffreys fluid past an infinite vertical flat porous surface with ramped wall velocity and temperature. Int. Commun. Heat Mass Transf. 126, 105399 (2021)

    Article  Google Scholar 

  24. Raju, C.S.K., Basha, H.T., Noor, N.F.M., Shah, N.A., Yook, S.J.: Significance of body acceleration and gold nanoparticles through blood flow in an uneven/composite inclined stenosis artery: A finite difference computation. Math. Comput. Simul. 215, 399–419 (2023)

    Article  MathSciNet  Google Scholar 

  25. Srilatha, P., Abu-Zinadah, H., Kumar, R.S.V., Alsulami, M.D., Kumar, R.N., Abdulrahman, A., Punith Gowda, R.J.: Effect of nanoparticle diameter in Maxwell nanofluid flow with thermophoretic particle deposition. Mathematics 11, 3501 (2023)

    Article  Google Scholar 

  26. Reddy, M.G., Rani, M.S., Kumar, K.G., Prasannakumar, B., Lokesh, H.: Hybrid dusty fluid flow through a Cattaneo-Christov heat flux model. Phys. A: Stat. Mech. 551, 123975 (2020)

    Article  MathSciNet  Google Scholar 

  27. Abbas, W., Mekheimer, K.S., Ghazy, M.M., Moawad, A.: Thermal radiation effects on oscillatory squeeze flow with a particle-fluid suspension. Heat Transf. 50, 2129–2149 (2020)

    Article  Google Scholar 

  28. Raju, C.S.K., Ahammad, N.A., Sajjan, K., Shah, N.A., Yook, S.J., Kumar, M.D.: Nonlinear movements of axisymmetric ternary hybrid nanofluids in a thermally radiated expanding or contracting permeable Darcy walls with different shapes and densities: Simple linear regression. Int. Commun. Heat Mass Transf. 135, 106110 (2022)

    Article  CAS  Google Scholar 

  29. Kumar, R.S.V., Saleh, B., Sowmya, G., Afzal, A., Prasannakumara, B.C., Punith Gowda, R.J.: Exploration of transient heat transfer through a moving plate with exponentially temperature-dependent thermal properties. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2056256

    Article  Google Scholar 

  30. Das, S., Mahato, N., Ali, A., Jana, R.N.: Dynamics pattern of a radioactive rGO-magnetite-water flowed by a vibrated Riga plate sensor with ramped temperature and concentration. Chem. Eng. J. Adv. 15, 100517 (2023)

    Article  CAS  Google Scholar 

  31. Yook, S.J., Raju, C.S.K., Almutairi, B., Mamatha, S.U., Shah, N.A., Eldin, S.M.: Heat and momentum diffusion of ternary hybrid nanoparticles in a channel with dissimilar permeability’s and moving porous walls: A Multi-linear regression. Case Stud. Therm. Eng. 47, 103133 (2023)

    Article  Google Scholar 

  32. Ahmad, S., Nadeem, S.: Application of CNT-based micropolar hybrid nanofluid flow in the presence of Newtonian heating. Appl. Nanosci. 10(12), 5265–5277 (2020)

    Article  ADS  CAS  Google Scholar 

  33. Das, S., Mandal, C., Jana, R.N.: Unsteady mixed convection flow past a vertical plate with newtonian heating. Int. J. Energy Tech. 6, 1–9 (2014)

    ADS  CAS  Google Scholar 

  34. Das, M., Mahato, R., Nandkeolyar, R.: Newtonian heating effect on unsteady hydromagnetic Casson fluid flow past a flat plate with heat and mass transfer. Alex. Eng. J. 54(4), 871–879 (2015)

    Article  Google Scholar 

  35. Upadhya, S.M., Raju, C.S.K., Saleem, S., Alderremy, A.A.: Mahesha, Modified Fourier heat flux on MHD flow over stretched cylinder filled with dust, graphene and silver nanoparticles. Results Phys. 9, 1377–1385 (2018)

    Article  ADS  Google Scholar 

  36. Khan, A., Khan, D., Khan, I., Ali, F., Karim, F.U., Imran, M.: MHD flow of sodium alginate-based Casson type nanofluid passing through porous medium with Newtonian heating. Sci. Rep. 8, 8645 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  37. Ali, A., Das, S., Jana, R.N.: MHD gyrating stream of non-Newtonian modified hybrid nanofluid past a vertical plate with ramped motion, Newtonian heating and Hall currents. Z. Angew. Math. Mech. (2023). https://doi.org/10.1002/zamm.202200080

    Article  Google Scholar 

  38. Kamran, M., Wiwatanapataphee, B.: Chemical reaction and Newtonian heating effects on steady convection flow of a micropolar fluid with second order slip at the boundary. Eur. J. Mech. B Fluid 71, 138–150 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. Hady, F., Mahdy, A., Mohamed, R., Zaid, O.A.A.: Modeling non-Darcy natural convection flow of a micropolar dusty fluid with convective boundary condition. Int. J. Aerosp. Eng. 14, 53–59 (2020)

    Google Scholar 

  40. Qaiser, D., Zheng, Z., Khan, M.R.: Numerical assessment of mixed convection flow of Walters-B nanofluid over a stretching surface with Newtonian heating and mass transfer. Therm. Sci. Eng. Prog. 22, 100801 (2021)

    Article  CAS  Google Scholar 

  41. Khan, D., Kumam, P., ur Rahman, A., Ali, G., Sitthithakerngkiet, K., Watthayu, W., Galal, A.M.: The outcome of Newtonian heating on Couette flow of viscoelastic dusty fluid along with the heat transfer in a rotating frame: second law analysis. Heliyon 8, e10538 (2022)

  42. Dhiman, S., Sharma, T., Singh, K., Nisar, K.S., Kumar, R., Raju, C.S.K.: Dual stratification and cross-diffusion effects on the non-orthogonal stagnation point flow of a nanofluid over an oscillating surface. Eur. Phys. J. Plus 138(9), 831 (2023)

    Article  Google Scholar 

  43. Sharma, T., Kumar, R., Vaidya, H., Raju, C.S.K., Vajravelu, K.: Numerical investigation of the hybrid ferrofluid flow in a heterogeneous porous channel with convectively heated and quadratically stretchable walls. Eur. Phys. J. Plus 138, 745 (2023)

    Article  CAS  Google Scholar 

  44. Nandkeolyar, R., Seth, G.S., Makinde, O.D., Sibanda, P., Ansari, M.S.: Unsteady hydromagnetic natural convection flow of a dusty fluid past an impulsively moving vertical plate with ramped temperature in the presence of thermal radiation. J. Appl. Mech. 80(6), 061003 (2013)

    Article  Google Scholar 

  45. Hazarika, G.C., Konch, J.: Effects of variable viscosity and thermal conductivity on magnetohydrodynamic free convection dusty fluid along a vertical porous plate with heat generation. Turk. J. Phys. 40(1), 52–68 (2016)

    Article  CAS  Google Scholar 

  46. Jalil, M., Asghar, S., Yasmeen, S.: An exact solution of MHD boundary layer flow of dusty fluid over a stretching surface. Math. Probl. Eng. 2017, 2307469 (2017)

    Article  MathSciNet  Google Scholar 

  47. Turkyilmazoglu, M.: Magnetohydrodynamic two-phase dusty fluid flow and heat model over deforming isothermal surfaces. Phys. Fluids 29, 013302 (2017)

    Article  ADS  Google Scholar 

  48. Gireesha, B., Mahanthesh, B., Thammanna, G., Sampathkumar, P.: Hall effects on dusty nanofluid two-phase transient flow past a stretching sheet using KVL model. J. Mol. Liq. 256, 139–147 (2018)

    Article  CAS  Google Scholar 

  49. Abo-zaid, O.A., Mohamed, R.A., Hady, F.M., Mahdy, A.: MHD Powell-Eyring dusty nanofluid flow due to stretching surface with heat flux boundary condition. J. Egypt. Math. Soc. 29, 14 (2021)

    Article  MathSciNet  Google Scholar 

  50. Hamid, R.A., Nazar, R., Naganthran, K., Pop, I.: Dusty ferrofluid transport phenomena towards a non-isothermal moving surface with viscous dissipation. Chin. J. Phys. 75, 139–151 (2022)

    Article  MathSciNet  CAS  Google Scholar 

  51. Mishra, S.R., Sun, T.C., Rout, B.C., Khan, M.I., Alaoui, M.K., Khan, S.U.: Control of dusty nanofluid due to the interaction on dust particles in a conducting medium: numerical investigation. Alex. Eng. J. 61, 3341–3349 (2022)

    Article  Google Scholar 

  52. Reddy, S.R.R., Raju, C.S.K., Gunakala, S.R., Basha, H.T., Yook, S.J.: Bio-magnetic pulsatile CuO-Fe\(_3\)O\(_4\) hybrid nanofluid flow in a vertical irregular channel in a suspension of body acceleration. Int. Commun. Heat Mass Transf. 135, 106151 (2022)

    Article  CAS  Google Scholar 

  53. Sandeep, N., Sulochana, C., Kumar, B.R.: Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface. Int. J. Eng. Sci. Technol. 19, 227–240 (2016)

    Google Scholar 

  54. Jha, B.K., Danjuma, Y.J.: Transient generalized Taylor-Couette flow of a dusty fluid: A semi-analytical approach. Partial Differ. Equ. Appl. Math. 5, 100400 (2022)

    Article  Google Scholar 

  55. Abbas, W., Khaled, O., Beshir, S., Abdeen, M., Elshabrawy, M.: Analysis of chemical, ion slip, and thermal radiation effects on an unsteady magnetohydrodynamic dusty fluid flow with heat and mass transfer through a porous media between parallel plates. Bull. Natl. Res. Cent. 47, 49 (2023)

    Article  Google Scholar 

  56. Kumar, M.D., Raju, C.S.K.: Uniform structure of solid hybrid particles and Fourier flux on MLR significance of dual dynamical jumps on MHD flow: Lie group similarities. Int. J. Mod. Phys. B 37(1), 2350209 (2023)

    Article  Google Scholar 

  57. Das, S., Das, S.: EDL aspects in swirling ionic tribological fluid flow in a squeezed/split channel underlie a high-power magnetic field. Forces Mech. 11, 100196 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to the esteemed editor and referees for their valuable insights and constructive feedback, which have significantly contributed to the enhancement of our paper.

Funding

No funding available for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanatan Das.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The following constant expressions are utilized in the results.

$$\begin{aligned} a= & {} Pr+\frac{2}{3}\frac{R}{\gamma },\;b=\frac{Ra}{a},\; a_0=-\frac{\alpha _0}{\sqrt{a}},\; \beta _0=1+\frac{1}{\beta },\\ c= & {} \frac{1}{\beta _0}\left( 1+\frac{R}{\lambda _2}\right) ,\; c_0=\frac{a_0}{a-c},\; \lambda _1=\frac{M^2}{1+R/\lambda _2}, \;\lambda _2=\frac{1}{\sigma _1},\;\lambda _3=\frac{c_0Gr}{\beta _0},\\ \beta _1= & {} \frac{c\lambda _1-ab}{a-c},\;\beta _2=a_0^2-b,\\ \psi _1(x, e_0, e_1, y)= & {} L^{-1}\left[ \frac{e^{-\sqrt{\xi +e_1}\,x}}{\xi (e_0+\sqrt{\xi +e_1})}\right] \\= & {} -\frac{e_0}{e_0^2-e_1} e^{e_0x+(e_0^2-e_1)y} \textrm{efrc}\left( \frac{x}{2\sqrt{y}}+e_0\sqrt{y}\right) \nonumber \\&\quad +\,&\frac{1}{2(e_0^2-e_1)}\left[ (e_0+\sqrt{e_1})e^{x\sqrt{e_1}}\,\textrm{efrc}\left( \frac{x}{2\sqrt{y}}+\sqrt{e_1y}\right) \right. \nonumber \\{} & {} \left. \quad +\,(e_0-\sqrt{e_1})e^{-x\sqrt{e_1}}\,\textrm{efrc}\left( \frac{x}{2\sqrt{y}}-\sqrt{e_1y}\right) \right] ,\\ \psi _2(x, e_0, y)= & {} L^{-1}\left[ \frac{e^{-\sqrt{\xi +e_0}\,x}}{\xi ^2}\right] \\= & {} \frac{1}{2}\left[ \left( y+\frac{x}{2\sqrt{e_0}}\right) e^{x\sqrt{e_0}}\textrm{erfc} \left( \frac{x}{2\sqrt{y}}+\sqrt{e_0y}\right) \right. \\{} & {} \quad +\,\left. \left( y-\frac{x}{2\sqrt{e_0}}\right) e^{-x\sqrt{e_0}}\textrm{erfc} \left( \frac{x}{2\sqrt{y}}-\sqrt{e_0y}\right) \right] ,\\ \psi _3(x, e_0, e_1, e_2, y)= & {} L^{-1}\left[ \frac{e^{-\sqrt{(\xi +e_1)}\,x}}{\xi (\xi -e_2)(e_0+\sqrt{\xi +e_1})}\right] \\= & {} -\frac{e_0}{(e_0^2-e_1)(e_0^2-e_1-e_2)} e^{e_0x+(e_0^2-e_1)y} \textrm{efrc}(\frac{x}{2\sqrt{y}}+e_0\sqrt{y})\nonumber \\{} & {} \quad +\,\frac{e^{-e_2y}}{2e_2(e_0^2-e_1-e_2)}\left[ (e_0+\sqrt{e_1+e_2})e^{x\sqrt{e_1+e_2}}\,\textrm{efrc}\left( \frac{x}{2\sqrt{y}}+\sqrt{(e_1+e_2)y}\right) \right. \nonumber \\{} & {} \quad +\,\left. (e_0-\sqrt{e_1-e_2})e^{-x\sqrt{e_1+e_2}}\,\textrm{efrc}\left( \frac{x}{2\sqrt{y}}-\sqrt{(e_1+e_2)y}\right) \right] \nonumber \\{} & {} \quad -\,\frac{1}{2e_2(e_0^2-e_1)}\left[ (e_0+\sqrt{e_1})e^{x\sqrt{e_1}}\,\textrm{efrc}\left( \frac{x}{2\sqrt{y}}+\sqrt{e_1y}\right) \right. \nonumber \\{} & {} \quad +\,\left. (e_0-\sqrt{e_1})e^{-x\sqrt{e_1}}\,\textrm{efrc}\left( \frac{x}{2\sqrt{y}}-\sqrt{e_1y}\right) \right] ,\\ \psi _4(x, e_0, e_1, e_2, e_3, e_4, \tau )= & {} L^{-1}\left[ \frac{e^{-\sqrt{\xi +e_1}\,x}}{\xi (\xi -e_3)(e_0+\sqrt{\xi +e_2})}\right] \\= & {} \left[ \frac{1}{e_3-e_4}\left( \frac{e_2}{e_3}+1\right) \psi _5(x, e_1, e_2, e_3,y)\right. \\{} & {} \quad +\,\left. \frac{1}{e_4-e_3} \left( \frac{e_2}{e_4}+1\right) \psi _5(x, e_1, e_4, e_2,y) +\frac{1}{e_3e_4} \psi _5(x, e_1, 0, e_2, y) \right] \\{} & {} \quad -\,e_0 \left[ \frac{1}{e_3(e_3-e_4)} \psi _6(x, e_1, e_3, y)+\frac{1}{e_4(e_4-e_3)} \psi _6(x, e_1, e_4, y) \right. \\{} & {} \quad +\,\left. \frac{1}{e_3e_4} \psi _6(x, e_1, 0, y) \right] ,\\ \psi _5(x, e_0, e_1, e_2, y)= & {} L^{-1}\left[ \frac{e^{-\sqrt{\xi +e_0}\,x}}{(\xi -e_2)\sqrt{\xi +e_1}}\right] \\= & {} \frac{\sqrt{e_0+e_2}}{2(e_3+e_1)} e^{e_2y}\left[ e^{-x\sqrt{e_0+e_2}}\textrm{erfc} \left\{ \frac{x}{2\sqrt{y}}-\sqrt{(e_0+e_2)y}\right\} \right. \\{} & {} \quad -\left. \,e^{-x\sqrt{e_0+e_2}}\textrm{erfc} \left\{ \frac{x}{2\sqrt{y}}+\sqrt{(e_0+e_2)y}\right\} \right] \\{} & {} \quad +\,\frac{i\sqrt{e_1-e_0}}{2(e_2+e_1)}e^{-e_1y} \left[ e^{ix\sqrt{e_1-e_0}}\textrm{erfc} \left\{ \frac{x}{2\sqrt{y}}+i\sqrt{(e_1-e_0)y}\right\} \right. \\{} & {} \quad -\,\left. e^{-ix\sqrt{e_1-e_0}}\textrm{erfc} \left\{ \frac{x}{2\sqrt{y}}-i\sqrt{(e_1-e_0)y}\right\} \right] ,\\ \psi _6(x, e_0, e_1, y)= & {} L^{-1}\left[ \frac{e^{-\sqrt{\xi +e_0}\,x}}{\xi -e_1}\right] \\= & {} \frac{1}{2}e^{e_1y}\left[ e^{x\sqrt{e_0+e_1}}\textrm{erfc} \left\{ \frac{x}{2\sqrt{y}}+\sqrt{(e_0+e_1)y}\right\} \right. \\{} & {} \quad +\,\left. e^{-x\sqrt{e_0+e_1}}\textrm{erfc} \left\{ \frac{x}{2\sqrt{y}}-\sqrt{(e_0+e_1)y}\right\} \right] ,\\ \psi _7(x, e_0, e_1, y)= & {} L^{-1}\left[ \frac{e^{-\sqrt{\xi +e_0}\,x}}{\xi ^2(\xi -e_1)}\right] \\= & {} \frac{1}{2e_1^2}e^{e_1\tau }\left[ e^{x\sqrt{e_0+e_1}}\textrm{erfc} \left\{ \frac{x}{2\sqrt{y}}+\sqrt{(e_0+e_1)y}\right\} \right. \\{} & {} \quad +\,\left. e^{-x\sqrt{e_0+e_1}}\textrm{erfc} \left\{ \frac{x}{2\sqrt{y}}-\sqrt{(e_0+e_1)y}\right\} \right] \\- & {} \frac{1}{2e_1}\left[ (y+\frac{1}{e_1}+\frac{x}{2\sqrt{e_0}})e^{x\sqrt{e_0}}\textrm{erfc} \left( \frac{x}{2\sqrt{y}}+\sqrt{e_0y}\right) \right. \\{} & {} \quad +\,\left. (y+\frac{1}{e_1}-\frac{x}{2\sqrt{e_0}})e^{-x\sqrt{e_0}}\textrm{erfc} \left( \frac{x}{2\sqrt{y}}-\sqrt{e_0y}\right) \right] ,\\ \psi _8(x, e_0, y)= & {} L^{-1}\left[ \frac{e^{-\sqrt{\xi +e_0}\,x}}{\xi }\right] \\= & {} \frac{1}{2}\left[ e^{x\sqrt{e_0}}\textrm{erfc} \left( \frac{x}{2\sqrt{y}}+\sqrt{e_0y}\right) +e^{-x\sqrt{e_0}}\textrm{erfc} \left( \frac{x}{2\sqrt{y}}-\sqrt{e_0y}\right) \right] ,\\ \psi ^\prime _1(0, e_0, e_1, y)= & {} \frac{e_0^2}{e_0^2-e_1} e^{(e_0^2-e_1)y}\left[ e_0\, \textrm{efrc}(e_0\sqrt{y})-\frac{1}{\sqrt{\pi y}} e^{-e_0^2y}\right] \\{} & {} \quad +\,\frac{1}{e_0^2-e_1}\left[ e_0\sqrt{e_1}\, \textrm{efr}(\sqrt{e_1y})+\frac{e_0}{\sqrt{\pi y}}e^{-e_1y}-e_1\right] \\ \psi ^\prime _2(0, e_0,y)= & {} -\left[ \left( y\sqrt{e_0}+\frac{1}{2\sqrt{e_0}}\right) \,\textrm{erf}(\sqrt{e_0y})+\sqrt{\frac{y}{\pi }} e^{-e_0y}\right] ,\\ \psi ^\prime _3(0, e_0, e_1, e_2, y)= & {} - \frac{e_0^2 e^{(e_0^2-e_1)y}}{(e_0^2-e_1)(e_0^2-e_1-e_2)} \left[ e_0\, \textrm{efrc}(e_0\sqrt{y})-\frac{1}{\sqrt{\pi y}} e^{-e_0^2y}\right] \\{} & {} \quad -\,\frac{e^{e_2y}}{e_2(e_0^2-e_1-e_2)}\left[ e_0\sqrt{e_1+e_2}\, \textrm{efr}(\sqrt{(e_1+e_2)y})\right. \\{} & {} \quad +\,\left. \frac{e_0}{\sqrt{\pi y}}e^{-(e_1+e_2)y}-(e_1+e_2)\right] +\frac{1}{e_2(e_0^2-e_1)}\left[ e_0\sqrt{e_1}\, \textrm{efr}(\sqrt{e_1y})\right. \\{} & {} \quad +\,\left. \frac{e_0}{\sqrt{\pi y}}e^{-e_1y}-e_1\right] ,\\ \psi ^\prime _5(0, e_0, e_1, e_2, y)= & {} -\frac{}{}\left[ (e_0+e_3)e^{e_3y}-(e_0-e_2)e^{-e_2y}\right] ,\\ \psi ^\prime _6(0, e_0, e_1, y)= & {} -e^{e_1y}\left[ \sqrt{e_1+e_2}\, \textrm{efr}(\sqrt{(e_1+e_2)y})+\frac{1}{\sqrt{\pi y}}e^{-(e_1+e_2)y}\right] ,\\ \psi ^\prime _8(0, e_0, y)= & {} -\left[ \sqrt{e_0}\, \textrm{efr}(\sqrt{e_0y})+\frac{1}{\sqrt{\pi y}}e^{-e_0y}\right] \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Sarkar, S., Ali, A. et al. Exploration of magnetically influenced flow dynamics of a dusty fluid induced by the ramped movement of a thermally active plate. Arch Appl Mech 94, 407–433 (2024). https://doi.org/10.1007/s00419-023-02531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02531-z

Keywords

Navigation