Skip to main content
Log in

Computational Study of Dehydrogenation Properties for Ce-Doped NaAlH4 Nanocrystal

  • Published:
Catalysis Letters Aims and scope Submit manuscript

A Correction to this article was published on 08 February 2024

This article has been updated

Abstract

The effect of dopant Ce on the dehydrogenation properties of crystalline NaAlH4 is investigated by employing density functional theory.The result indicate that the Ce mainly influence the electronic structures of the adjacent atoms, the dehydrogenation effect is significantly sensitive to the occupation behavior of Ce atom, the removal energy of hydrogen is dramatically decreased, and the dehydrogenation performance of the doped NaAlH4 is conspicuously improved. The Ce-H and Ce-Al interaction weaken the Al-H bonding strength, which is main factor that enhance the dehydrogenation performance of the Ce-doped NaAlH4 nanocrystal.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Meduri S, Nandanavanam J (2023) Materials for hydrogen storage at room temperature–an overview. Mater Today: Proc 72:1–8

    CAS  Google Scholar 

  2. Singh G, Ramadass K, DasiReddy VDBC et al (2023) Material-based generation, storage, and utilisation of hydrogen. Prog Mater Sci 135:101104

    Article  CAS  Google Scholar 

  3. Ali NA, Ismail M (2021) Modification of NaAlH4 properties using catalysts for solid-state hydrogen storage: a review. Int J Hydrogen Energy 46(1):766–782

    Article  CAS  Google Scholar 

  4. Yongfeng Liu, Zhuanghe Ren, Xin Zhang et al (2018) Development of catalyst-enhanced sodium alanate as an advanced hydrogen-storage material for mobile applications. Energy Technology 6:487–500

    Article  Google Scholar 

  5. Bogdanović B, Schwickardi M (1997) Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloy Compd 253:1–9

    Article  Google Scholar 

  6. Frankcombe TJ (2012) Proposed mechanisms for the catalytic activity of Ti in NaAlH4. Chem Rev 112(4):2164–2178

    Article  CAS  PubMed  Google Scholar 

  7. Epelle EI, Desongu KS, Obande W et al (2022) A comprehensive review of hydrogen production and storage: a focus on the role of nanomaterials. Int J Hydrogen Energy 47(47):20398–20431

    Article  CAS  Google Scholar 

  8. Dematteis EM, Amdisen MB, Autrey T et al (2022) Hydrogen storage in complex hydrides: past activities and new trends. Prog Energy 4(3):032009

    Article  ADS  Google Scholar 

  9. Zhang Y, Liu C, Jiang J et al (2014) Dehydrogenation properties of La-doped NaAlH4 (001) surface: a first-principle approach. Int J Hydrogen Energy 39(18):9744–9751

    Article  CAS  Google Scholar 

  10. Bogdanović B, Brand RA, Marjanović A et al (2000) Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J Alloy Compd 302(1–2):36–58

    Article  Google Scholar 

  11. Balema VP, Balema L (2005) Missing pieces of the puzzle or about some unresolved issues in solid state chemistry of alkali metal aluminohydrides. Phys Chem Chem Phys 7(6):1310–1314

    Article  CAS  PubMed  Google Scholar 

  12. Íñiguez J, Yildirim T (2005) First-principles study of Ti-doped sodium alanate surfaces. Appl Phys Lett. https://doi.org/10.1063/1.1881787

    Article  Google Scholar 

  13. Yu HZ, Dai JH, Song Y (2015) Catalytic effect of Ti on dehydrogenation of Na3AlH6: a first principles investigation. Int J Hydrogen Energy 40(35):11478–11483

    Article  CAS  Google Scholar 

  14. Li S, Jena P, Ahuja R (2006) Effect of Ti and metal vacancies on the electronic structure, stability, and dehydrogenation of Na3AlH6: supercell band-structure formalism and gradient-corrected density-functional theory. Phys Rev B 73(21):214107

    Article  ADS  Google Scholar 

  15. Bogdanović B, Felderhoff M, Pommerin A et al (2009) Cycling properties of Sc-and Ce-doped NaAlH4 hydrogen storage materials prepared by the one-step direct synthesis method. J Alloy Compd 471(1–2):383–386

    Article  Google Scholar 

  16. Bogdanović B, Felderhoff M, Pommerin A et al (2006) Advanced hydrogen-storage materials based on Sc-, Ce-, and Pr-doped NaAlH4. Adv Mater 18(9):1198–1201

    Article  Google Scholar 

  17. Fan X, Xiao X, Chen L et al (2009) Active species of CeAl4 in the CeCl3-doped sodium aluminium hydride and its enhancement on reversible hydrogen storage performance. Chem Commun 44:6857–6859

    Article  Google Scholar 

  18. Fan X, Xiao X, Chen L et al (2011) Enhanced hydriding-dehydriding performance of CeAl2-doped NaAlH4 and the evolvement of Ce-containing species in the cycling. J Phys Chem C 115(5):2537–2543

    Article  CAS  Google Scholar 

  19. Fan X, Xiao X, Chen L et al (2013) Significantly improved hydrogen storage properties of NaAlH4 catalyzed by Ce-based nanoparticles. J Mater Chem A 1(34):9752–9759

    Article  CAS  Google Scholar 

  20. Hu J, Ren S, Witter R et al (2012) Catalytic influence of various cerium precursors on the hydrogen sorption properties of NaAlH4. Adv Energy Mater 2(5):560–568

    Article  CAS  Google Scholar 

  21. Sun T, Zhou B, Wang H et al (2008) The effect of doping rare-earth chloride dopant on the dehydrogenation properties of NaAlH4 and its catalytic mechanism. Int J Hydrogen Energy 33(9):2260–2267

    Article  CAS  Google Scholar 

  22. Lee GJ, Shim JH, Cho YW et al (2007) Reversible hydrogen storage in NaAlH4 catalyzed with lanthanide oxides. Int J Hydrogen Energy 32(12):1911–1915

    Article  CAS  Google Scholar 

  23. Hafner J (2007) Materials simulations using VASP-a quantum perspective to materials science. Comput Phys Commun 177(1–2):6–13

    Article  ADS  CAS  Google Scholar 

  24. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953

    Article  ADS  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Hauback BC, Brinks HW, Jensen CM et al (2003) Neutron diffraction structure determination of NaAlD4. J Alloy Compd 358(1–2):142–145

    Article  CAS  Google Scholar 

  27. Ley MB, Jepsen LH, Lee YS et al (2014) Complex hydrides for hydrogen storage-new perspectives. Mater Today 17(3):122–128

    Article  CAS  Google Scholar 

  28. Araújo CM, Li S, Ahuja R et al (2005) Vacancy-mediated hydrogen desorption in NaAlH4. Phys Rev B 72(16):165101

    Article  ADS  Google Scholar 

  29. Vajeeston P, Ravindran P, Vidya R et al (2003) Pressure-induced phase of NaAlH4: a potential candidate for hydrogen storage? Appl Phys Lett 82(14):2257–2259

    Article  ADS  CAS  Google Scholar 

  30. Song Y, Dai JH, Li CG et al (2009) Influence of dopants Ti and Ni on dehydrogenation properties of NaAlH4: electronic structure mechanisms. J Phys Chem C 113(23):10215–10221

    Article  CAS  Google Scholar 

  31. Kiyobayashi T, Srinivasan SS, Sun D et al (2003) Kinetic study and determination of the enthalpies of activation of the dehydrogenation of titanium-and zirconium-doped NaAlH4 and Na3AlH6. J Phys Chem A 107(39):7671–7674

    Article  CAS  Google Scholar 

  32. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92(9):5397–5403

    Article  ADS  CAS  Google Scholar 

  33. Savin A, Jepsen O, Flad J et al (1992) Electron localization in solid-state structures of the elements: the diamond structure. Angew Chem, Int Ed Engl 31(2):187–188

    Article  Google Scholar 

  34. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371(6499):683–686

    Article  ADS  CAS  Google Scholar 

  35. Dronskowski R, Blöchl PE (1993) Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J Phys Chem 97(33):8617–8624

    Article  CAS  Google Scholar 

  36. Deringer VL, Tchougréeff AL, Dronskowski R (2011) Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J Phys Chem A 115(21):5461–5466

    Article  CAS  PubMed  Google Scholar 

  37. Hughbanks T, Hoffmann R (1983) Chains of trans-edge-sharing molybdenum octahedra: metal-metal bonding in extended systems. J Am Chem Soc 105(11):3528–3537

    Article  CAS  Google Scholar 

  38. Steinberg S, Dronskowski R (2018) The crystal orbital Hamilton population (COHP) method as a tool to visualize and analyze chemical bonding in intermetallic compounds. Crystals 8(5):225

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the innovation fund project of higher education teachers in Gansu Province (Grant No.2023B-417), the scientific research start-up project for talent introduction of Shaanxi University of Technology (SLGRCQD2023), and the regional fund project of Gansu province (Grant No.12064039), we also thank for the computation resources of the Institute of Atomic and Molecular Physics in Gansu province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Tong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of the article was revised: Dr. Tong affiliation information has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Yang, S. & Chen, J. Computational Study of Dehydrogenation Properties for Ce-Doped NaAlH4 Nanocrystal. Catal Lett (2024). https://doi.org/10.1007/s10562-023-04533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-023-04533-6

Keywords

Navigation