Skip to main content
Log in

Affective valence does not reflect progress prediction errors in perceptual decisions

  • Research Article
  • Published:
Cognitive, Affective, & Behavioral Neuroscience Aims and scope Submit manuscript

Abstract

Affective valence and intensity form the core of our emotional experiences. It has been proposed that affect reflects the prediction error between expected and actual states, such that better/worse-than-expected discrepancies result in positive/negative affect. However, whether the same principle applies to progress prediction errors remains unclear. We empirically and computationally evaluate the hypothesis that affect reflects the difference between expected and actual progress in forming a perceptual decision. We model affect within an evidence accumulation framework where actual progress is mapped onto the drift-rate parameter and expected progress onto an expected drift-rate parameter. Affect is computed as the difference between the expected and actual amount of accumulated evidence. We find that expected and actual progress both influence affect, but in an additive manner that does not align with a prediction error account. Our computational model reproduces both task behavior and affective ratings, suggesting that sequential sampling models provide a promising framework to model progress appraisals. These results show that although affect is sensitive to both expected and actual progress, it does not reflect the computation of a progress prediction error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., Dai, B., Scheipl, F., & Grothendieck, G. (2009). Package ‘lme4’. URL Http://Lme4. r-Forge. r-Project. Org.

  • Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of cognition, 1(1).

  • Carver, C. S. (2015). Control processes, priority management, and affective dynamics. Emotion Review, 7(4), 301–307.

    Article  Google Scholar 

  • Carver, C. S., Lawrence, J. W., & Scheier, M. F. (1996). A control-process perspective on the origins of affect.

    Google Scholar 

  • Carver, C. S., & Scheier, M. F. (1990). Origins and functions of positive and negative affect: A control-process view. Psychological Review, 97(1), 19.

    Article  Google Scholar 

  • Carver, C. S., & Scheier, M. F. (2013). Goals and emotion. Guilford Handbook of Cognition and Emotion, 176–194.

  • Chetverikov, A., & Kristjánsson, Á. (2016). On the joys of perceiving: Affect as feedback for perceptual predictions. Acta Psychologica, 169, 1–10.

    Article  PubMed  Google Scholar 

  • Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.

    Article  PubMed  Google Scholar 

  • De Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a web browser. Behavior Research Methods, 47, 1–12.

    Article  PubMed  Google Scholar 

  • Desender, K., Ridderinkhof, K. R., & Murphy, P. R. (2021). Understanding neural signals of post-decisional performance monitoring: An integrative review. Elife, 10, e67556.

    Article  PubMed  PubMed Central  Google Scholar 

  • Desender, K., Vermeylen, L., & Verguts, T. (2022). Dynamic influences on static measures of metacognition. Nature Communications, 13(1), 4208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drugowitsch, J., & Pouget, A. (2012). Probabilistic vs. non-probabilistic approaches to the neurobiology of perceptual decision-making. Current Opinion in Neurobiology, 22(6), 963–969.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eldar, E., Rutledge, R. B., Dolan, R. J., & Niv, Y. (2016). Mood as representation of momentum. Trends in Cognitive Sciences, 20(1), 15–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Emanuel, A., & Eldar, E. (2022). Emotions as computations. Neuroscience & Biobehavioral Reviews, 104977.

  • Fleming, S. M., & Daw, N. D. (2017). Self-evaluation of decision-making: A general Bayesian framework for metacognitive computation. Psychological Review, 124(1), 91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Givon, E., Itzhak-Raz, A., Karmon-Presser, A., Danieli, G., Meiran, N. (2020). How does the emotional experience evolve? Feeling generation as evidence accumulation. Emotion 20(2), 271.

  • Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535–574.

    Article  PubMed  Google Scholar 

  • Hesp, C., Smith, R., Parr, T., Allen, M., Friston, K. J., & Ramstead, M. J. (2021). Deeply felt affect: The emergence of valence in deep active inference. Neural Computation, 33(1), 1–49.

    Google Scholar 

  • Inzlicht, M., Shenhav, A., & Olivola, C. Y. (2018). The effort paradox: Effort is both costly and valued. Trends in Cognitive Sciences, 22(4), 337–349.

    Article  PubMed  PubMed Central  Google Scholar 

  • Joffily, M., & Coricelli, G. (2013). Emotional valence and the free-energy principle. PLoS Comput Biology, 9(6), e1003094.

    Article  Google Scholar 

  • Khalvati, K., Kiani, R., & Rao, R. P. (2021). Bayesian inference with incomplete knowledge explains perceptual confidence and its deviations from accuracy. Nature Communications, 12(1), 5704.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein, C. (2018). What do predictive coders want? Synthese, 195(6), 2541–2557.

    Article  Google Scholar 

  • Kuppens, P., Allen, N. B., & Sheeber, L. B. (2010). Emotional inertia and psychological maladjustment. Psychological Science, 21(7), 984–991. https://doi.org/10.1177/0956797610372634

    Article  PubMed  Google Scholar 

  • Kurzban, R. (2016). The sense of effort. Current Opinion in Psychology, 7, 67–70.

    Article  Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2015). Package ‘lmertest’. R Package Version, 2(0), 734.

  • Loossens, T., Mestdagh, M., Dejonckheere, E., Kuppens, P., Tuerlinckx, F., & Verdonck, S. (2020). The Affective Ising Model: A computational account of human affect dynamics. PLoS Computational Biology, 16(5).

  • Moors, A., Ellsworth, P. C., Scherer, K. R., & Frijda, N. H. (2013). Appraisal theories of emotion: State of the art and future development. Emotion Review, 5(2), 119–124.

    Article  Google Scholar 

  • Moors, A., Van de Cruys, S., & Pourtois, G. (2021). Comparison of the determinants for positive and negative affect proposed by appraisal theories, goal-directed theories, and predictive processing theories. Current Opinion in Behavioral Sciences, 39, 147–152.

    Article  Google Scholar 

  • Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W., & Forstmann, B. U. (2012). Bias in the brain: A diffusion model analysis of prior probability and potential payoff. Journal of Neuroscience, 32(7), 2335–2343.

    Article  PubMed  Google Scholar 

  • Mullen, K., Ardia, D., Gil, D. L., Windover, D., & Cline, J. (2011). DEoptim: An R package for global optimization by differential evolution. Journal of Statistical Software, 40(6), 1–26.

    Article  Google Scholar 

  • Pleskac, T. J., & Busemeyer, J. R. (2010). Two-stage dynamic signal detection: A theory of choice, decision time, and confidence. Psychological Review, 117(3), 864.

    Article  PubMed  Google Scholar 

  • Proust, J. (2014). The representational structure of feelings. In Open MIND. Open MIND. MIND Group.

    Google Scholar 

  • Rajananda, S., Lau, H., & Odegaard, B. (2018). A random-dot kinematogram for web-based vision research. Journal of Open Research Software, 6(1).

  • Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20(4), 260–281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell, J. A. (2009). Emotion, core affect, and psychological construction. Cognition and Emotion, 23(7), 1259–1283.

    Article  Google Scholar 

  • Rutledge, R. B., Skandali, N., Dayan, P., & Dolan, R. J. (2014). A computational and neural model of momentary subjective well-being. Proceedings of the National Academy of Sciences, 111(33), 12252–12257. https://doi.org/10.1073/pnas.1407535111

    Article  Google Scholar 

  • Scherer, K. R. (2009). The dynamic architecture of emotion: Evidence for the component process model. Cognition and emotion, 23(7), 1307–1351.

  • Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217–240.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, R., Ramstead, M. J., & Kiefer, A. (2022). Active inference models do not contradict folk psychology. Synthese, 200(2), 81.

    Article  Google Scholar 

  • Uusberg, A., Taxer, J. L., Yih, J., Uusberg, H., & Gross, J. J. (2019). Reappraising reappraisal. Emotion Review, 11(4), 267–282.

    Article  Google Scholar 

  • Van de Cruys, S. (2017). Affective value in the predictive mind. MIND Group.

    Google Scholar 

  • Van de Cruys, S., Bervoets, J., & Moors, A. (2022). Preferences need inferences: Learning, valuation, and curiosity in aesthetic experience. In The Routledge international handbook of Neuroaesthetics (pp. 475–506). Routledge.

    Chapter  Google Scholar 

  • Van Marcke, H., Denmat, P. L., Verguts, T., & Desender, K. (2022). Manipulating prior beliefs causally induces under-and overconfidence. BioRxiv, 2022–2003.

  • Velasco, P. F., & Loev, S. (2020). Affective experience in the predictive mind: A review and new integrative account. Synthese, 1–36.

  • Velasco, P. F., & Loev, S. (2022). Cognitive feelings in the predictive mind: Emotion Meta-cognition and Predictive Processing.

    Google Scholar 

  • Villano, W. J., Otto, A. R., Ezie, C. E., Gillis, R., & Heller, A. S. (2020). Temporal dynamics of real-world emotion are more strongly linked to prediction error than outcome. Journal of Experimental Psychology: General, 149(9), 1755.

    Article  PubMed  Google Scholar 

Download references

Open practices statement

The data, experiment and analysis code are available at https://osf.io/z85td/. The experiment was not preregistered.

Funding

This research was supported by a CELSA grant from the KU Leuven (CELSA/21/010) and Estonian Research Council grant PSG525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Voodla.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voodla, A., Uusberg, A. & Desender, K. Affective valence does not reflect progress prediction errors in perceptual decisions. Cogn Affect Behav Neurosci 24, 60–71 (2024). https://doi.org/10.3758/s13415-023-01147-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13415-023-01147-8

Keywords

Navigation