Skip to main content
Log in

Anatomical and morphological changes in Pinus sylvestris and Larix sibirica needles under impact of emissions from a large aluminum enterprise

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Species-specific anatomical and morphological characteristics of Pinus sylvestris and Larix sibirica needles were studied at different levels of tree stand pollution by aluminum smelter emissions. The anatomical characteristics of the needle were studied using light microscopy. The level of tree stand pollution was determined using the cluster analysis outcomes of the pollutant elements content (fluorine, sulfur, and heavy metals) in the needles. Four levels of tree stand pollution were separated: low, moderate, high, and critical, as well as background tree stand in unpolluted areas. It was found that the state of tree phytomass deteriorated with increasing levels of pollution (from low to critical): pine crown defoliation increased to 85%, and larch defoliation increased to 65%. The life span of pine needles was reduced to 2–3 years, with a background value of 6–7 years. The change of morphological parameters was more pronounced in P. sylvestris: the weight and length of the 2-year-old shoot decreased by 2.7–3.1 times compared to the background values; the weight of needles on the shoot and the number of needle pairs on the shoot—by 1.9–2.1 times. The length of the needle and shoot and the number of L. sibirica brachyblasts decreased by 1.8–1.9 times. The anatomical parameters of the needle also changed to a greater extent in P. sylvestris. Up to the high level of tree pollution, we observed a decrease in the cross-sectional area of the needle, central cylinder, vascular bundle, area and thickness of mesophyll, number and diameter of resin ducts by 18–66% compared to background values. At the critical pollution level, when the content of pollutant elements in pine needles reached maximum values, the anatomical parameters of the remaining few green needles were close to background values. In our opinion, this may be due to the activation of mechanisms aimed at maintaining the viability of trees. A reduction in thickness and area of assimilation tissue in the L. sibirica needle was detected only at the critical pollution level. An upward trend in these parameters was found at low, medium, and high pollution levels of tree stand, which may indicate an adaptive nature. The results suggested that at a similar pollution level of trees, the greatest amount of negative anatomical and morphological changes were recorded in pine needles, which indicates a greater sensitivity of this species to technogenic emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aamlid D, Venn K (1993) Methods of monitoring the effects of the air pollution on forest and vegetation of eastern Finnmark. Nor Nor J Agric Sci 7:71–87

    Google Scholar 

  • Abramenko OV (2015) The use of Siberian larch (Larix sibirica Ledeb.) as a bioindicator of the state urban plantations in the conditions of the forest-steppe zone of the Khakasko-Minusinsk hollow. Vestnik Krasnoyarsk State Agrarian University 1: 184–188

  • Afanasyeva LV, Ayushina TA (2019) Accumulation of heavy metals and biochemical responses in Siberian larch needles in urban area. Ecotoxicology 28(2):578–588. https://doi.org/10.1007/s10646-019-02055-9

    Article  CAS  Google Scholar 

  • Afanasyeva LV, Kalugina OV, Mikhailova TA (2021) The effect of aluminum smelter emissions on nutritional status of coniferous trees (Irkutsk Region, Russia). Environ Sci Pollut Res 28:62605–62615. https://doi.org/10.1007/s11356-021-15118-4

    Article  CAS  Google Scholar 

  • Alexeyev VA (1995) Impacts of air pollution on far north forest vegetation. Sci Total Environ 160:605–617.

  • Arnesen AKM, Abrahamsen G, Sandyik G, Krogstad T (1995) Aluminium-smelters and fluoride pollution of soil and soil solution in Norway. Sci Total Environ 163(1–3):39–53. https://doi.org/10.1016/0048-9697(95)04479-K

    Article  CAS  Google Scholar 

  • Awang MB, Mikhailova TA, Luangjame J, Carandang W, Mizoue N, Yamamoto K, Sase H, Takahashi A, Hakamata T, Boonpragob K, Insarov G, Tanikawa H, Nakashima A, Totsuka T (2007) Sub-manual on forest vegetation monitoring in EANET. Network Center for EANET, Acid deposition and oxidant research center (ADORC), Niigata

  • Bender OG, Zotikova AP, Velisevich SN (2008) The morphological and physiological features of needles in Larix sibirica on soils with different moisture. Lesovedenie 1:46–51

    Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194. https://doi.org/10.1093/aob/mcf118

    Article  CAS  Google Scholar 

  • Bonte I, Cantuel I (1981) Pollution par les pouasieres de goudrons emises au cours de la fabrication de l’aluminium: etude des inumescences observees chez les vegetaux. Phutiat Phyto Pharm 30(2):71–77

    CAS  Google Scholar 

  • Bosshard W (1986) Kronenbilder Eidgeössische anstalt für das forstliche versuschwesen. Birmensgeber

  • Brough D, Jouhara H (2020) The aluminium industry: a review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. Int J Thermofluids 1-2:10007. https://doi.org/10.1016/j.ijft.2019.100007

    Article  CAS  Google Scholar 

  • Cavaleiro C, Pinto E, Gonsalves MJ, Salgueiro L (2006) Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. J Appl Microbiol 100:1333–1338. https://doi.org/10.1111/j.1365-2672.2006.02862.x

    Article  CAS  Google Scholar 

  • Chang CW Fluorides (1975) In: Mudd JB, Koslowski TT (eds) Responses of plants to air pollution. Academic Press, London

  • Chojnacka-Ozga L, Ozga W (2021) Impact of air pollution on Scots pine stands growing in Poland on the basis of dendrochronological analysis. Environ Sci Proc 3:77. https://doi.org/10.3390/IECF2020-07999

    Article  Google Scholar 

  • Chropeňová M, Gregušková EK, Karásková P, Přibylová P, Kukučka P, Baráková D, Čupr P (2016) Pine needles and pollen grains of Pinus mugo Turra – a biomonitoring tool in high mountain habitats identifying environmental contamination. Ecol Indic 66:132–142. https://doi.org/10.1016/j.ecolind.2016.01.004

    Article  CAS  Google Scholar 

  • Chupakhina GH, Maslennikov PV (2004) Plant adaptation to oil stress. Russ J Ecol 35(5):290–295

    Article  CAS  Google Scholar 

  • Chylarecki H (1991) Growth dynamics and development of species and varieties of larches larch (Larix Mill.) in various site conditions of Poland. Pt. 1. Studies of larch stands under arboretum conditions. Arbor Korn 33:83

    Google Scholar 

  • Climate Bratsk (1985) Purtova LYa (ed), Gidrometeoizdat, Leningrad

  • Cools N, De Vos B (2010) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, UNECE, ICP Forests - Hamburg. http://www.icp-forests.org/Manual.htm

  • De Vries W, Klap J, Erisman JW (2000) Effects of environmental stress on forest crown condition in Europe part I: hypotheses and approach to the study. Water Air Soil Pollut 119:317–333. https://doi.org/10.1023/A:1005157509454

    Article  Google Scholar 

  • Dmuchowski W, Gozdowski D, Baczewska AH (2011) Comparison of four bioindication methods for assessing the degree of environmental lead and cadmium pollution. J Hazard Mater 197:109–118. https://doi.org/10.1016/j.jhazmat.2011.09.062

    Article  CAS  Google Scholar 

  • Donovan RG, Stewart HE, Owen SM, Mackenzie AR, Hewitt CN (2005) Development and application of an urban tree air quality score for photochemical pollution episodes using the Birmingham, United Kingdom, area as a case study. Environ Sci Technol 39(17):6730–6738. https://doi.org/10.1021/es050581y

    Article  CAS  Google Scholar 

  • Fäldt J (2000) Volatile constituents in conifers and conifer-related wood-decaying fungi: Biotic influences on the monoterpene compositions in pines. Stockholm

  • Foyer CH, Noctor G (2015) Defining robust redox signalling within the context of the plant cell. Plant Cell Environ 38(2):239. https://doi.org/10.1111/pce.12487

    Article  CAS  Google Scholar 

  • Gao Y, Guo X, Ji H, Li C, Ding H, Briki M, Tang L, Zhang Y (2016) Potential threat of heavy metals and PAHs in PM 2.5 in different urban functional areas of Beijing. Atmos Res 178:6–16. https://doi.org/10.1016/j.atmosres.2016.03.015

    Article  CAS  Google Scholar 

  • Geographical encyclopedia of Irkutsk oblast. A General Overview (2017) V.B. Sochava Institute of Geography Publisher, Irkutsk (in Russian)

  • Godek M, Sobik M, Bła´s M, Polkowska Z, Owczarek P, Bokwa A (2015) Tree rings as an indicator of atmospheric pollutant deposition to subalpine spruce forests in the Sudetes (Southern Poland). Atmos Res 151:259–268. https://doi.org/10.1016/j.atmosres.2014.09.001

    Article  CAS  Google Scholar 

  • Grossoni P, Bussotti F, Moil B, Magalotti M, Mansuino S (1998) Morpho-anatomical effects of pollutants on Pinus pinea L. needles. Chemosphere 36(4-5):913–917

    Article  CAS  Google Scholar 

  • Guderian P (1979) Air pollution. Mir, Moscow

  • Gytarsky ML, Karaban RT, Chemeris MV (1995) Monitoring of forest ecosystems in the Russian Subarctic. Sci Total Environ 164:57–68

    Article  CAS  Google Scholar 

  • Haidouti C, Chronopoulou A, Chronopoulos J (1993) Effects of fluoride emissions from industry on the fluoride concentration of soils and vegetation. Biochem Syst Ecol 21(2):195–208. https://doi.org/10.1016/0305-1978(93)90037-R

    Article  CAS  Google Scholar 

  • He X, Pang Y, Song X, Chen B, Feng Z, Ma Y (2014) Distribution, sources and ecological risk assessment of PAHs in surface sediments from Guan River Estuary, China. Mar Pollut Bull 80(1–2):52–58. https://doi.org/10.1016/j.marpolbul.204.01.051

    Article  CAS  Google Scholar 

  • Hitchock AE, Zimmerman PW, Cooe RR (1962) Results of ten years work (1951–1960) on the effects of fluorides on Gladiolus. Contrib Boyce Thompson Inst 21:303–344

    Google Scholar 

  • Islam MA, Macdonald SE (2004) Ecophysiological adaptation of black spruce (Picea mariana) and tamarack (Larix laricina) seedlings to flooding. Trees 18:35–42. https://doi.org/10.1007/s00468-003-0276-9

    Article  Google Scholar 

  • Ivanova MV, Suvirova GG (2014) Structure and function of the photosynthetic apparatus of conifers in the conditions of the south of Eastern Siberia. Publishing house of the Institute of Geography. V.B. Sochavy SB RAS, Irkutsk

  • Jankowski A, Wyka TP, Żytkowiak R, Nihlgård B, Reich PB, Oleksyn J (2017) Cold adaptation drives variability in needle structure and anatomy in Pinus sylvestris L. along a 1900 km temperate–boreal transect. Functional Ecology https://doi.org/10.1111/1365-2435.12946

  • Jin EJ, Yoon JH, Bae EJ, Jeong BR, Yong SH, Choi MS (2021) Particulate matter removal ability of ten evergreen trees planted in Korea urban greening. Forests 12(4):438. https://doi.org/10.3390/f12040438

    Article  Google Scholar 

  • Kalugina OV, Afanasyeva LV, Mikhailova TA, Filinova NV (2022) Activity of low-molecular weight components of Larix sibirica antioxidant system under exposure to technogenic pollution. Ecotoxicology 31(10):1492–1505. https://doi.org/10.1007/s10646-022-02607-6

    Article  CAS  Google Scholar 

  • Kalugina OV, Mikhailova TA, Afanasyeva LV, Gurina VV, Ivanova MV (2021) Changes in the fatty acid composition of pine needle lipids under the aluminum smelter emissions. Ecotoxicology 29(4):1287–1289. https://doi.org/10.1007/s10646-021-02479-2

    Article  CAS  Google Scholar 

  • Kalugina OV, Mikhailova TA, Shergina OV (2017) Pinus sylvestris as a bio-indicator of territory pollution from aluminum smelter emissions. Env Sci Pollut Res 24(11):10279–10291. https://doi.org/10.1007/s11356-017-8674-5

    Article  CAS  Google Scholar 

  • Kalugina OV, Mikhailova TA, Shergina OV (2018) Biochemical adaptation of Scots pine (Pinus sylvestris L.) to technogenic pollution. Contemp Probl Ecol 1(1):79–88. https://doi.org/10.1134/s995425518010043

    Article  Google Scholar 

  • Kalugina OV, Shergina OV, Mikhailova TA (2020) Ecological condition of natural forests located within the territory of a large industrial center, Eastern Siberia, Russia. Environ Sci Pollut Res 27:22400–22413. https://doi.org/10.1007/s11356-020-08718-z

    Article  CAS  Google Scholar 

  • Kasimov NS, Bityukova VR, Kislov AV, Kosheleva NE, Nikiforova EM, Malkhazova SM, Shartova NV (2012) Ecogeochemical problems of large cities. Razvedka I Okhrana Nedr 7:8–13.

    Google Scholar 

  • Kelly DL, Connolly A (2000) A review of the plant communities associated with Scots pine (Pinus sylvestris L.) in Europe, and an evaluation of putative indicator/specialist species. Forest Syst 9:15–39

    Google Scholar 

  • Kivimäenpää M, Sutinen S, Valolahti H, Häikiö E, Riikonen J, Kasurinen A, Ghimire RP, Holopainen JK, Holopainen T (2017) Warming and elevated ozone differently modify needle anatomy of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). Can J For Res 47(4):488–499. https://doi.org/10.1139/cjfr-2016-0406

    Article  CAS  Google Scholar 

  • Kozlowski TT, Pallardy SG (2020) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68(2):270–334

    Article  Google Scholar 

  • Kulikov BP, Storozhev YI (2012) Dust and gas emissions of aluminum electrolyzers with self-baking anodes. Siberian Federal University, Krasnoyarsk

  • Kurczyńska EU, Beltowski M, Wloch W (1996) Morphological and anatomical changes of Scots pine dwarf shoots induced by air pollutants. Environ Exp Bot 36(2):185–197

    Article  Google Scholar 

  • Lamppu J, Huttunen (2003) Relations between Scots pine needle element concentrations and decreased needle longevity along pollution gradients. Environ Pollut 122(2003):119–126

    Article  CAS  Google Scholar 

  • Legoshchina OM, Neverova OA, Bykov AA (2013) The variability of the anatomical structure of Pine needles of Picea obovata Ledeb. Under the effect of emissions from the industrial zone of Kemerovo. Contemp Probl Ecol 5:733–739

    Google Scholar 

  • Lin J, Jach ME, Ceulemans R (2001) Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2. New Phytologist 150:665–674

    Article  Google Scholar 

  • Lόpez R, Climent J, Gil L (2008) From desert to cloud forest: the non-trivial phenotyp-ic variation of Canary Island pine needles. Trees Struct Funct 22(6):843–849

    Article  Google Scholar 

  • Mandre M (2003) Conditions for mineral nutrition and content of nutrients in Scots pine (Pinus sylvestris) on dunes in Southwest Estonia. For Stud 39:32–42

    Google Scholar 

  • Mandre M, Lukjanova A (2011) Biochemical and structural characteristics of Scots pine (Pinus sylvestris L.) in an alkaline environment. Est J Ecol 60(4):264–283. https://doi.org/10.3176/eco.2011.4.02

    Article  Google Scholar 

  • Manninen S, Zverev V, Bergman I, Kozlov MV (2015) Consequences of long-term severe industrial pollution for aboveground carbon and nitrogen pools in northern taiga forests at local and regional scales. Sci Total Environ 536:616–624. https://doi.org/10.1016/jscitotenv.2015.07.097

    Article  CAS  Google Scholar 

  • Marin M, Koko V, Duletić-Laušević S, Marin PD (2009) Effects of air pollution on needles of Cedrus atlantica (Endl.) Carriere in industrial area of Pančevo (Serbia). Bot Serbica 33(1):69–73. (2009)

    Google Scholar 

  • Mikhailova TA (2000) The physiological condition of pine trees in the Prebaikalia (East Siberia). For Pathol 30(6):345–359. https://doi.org/10.1046/j.1439-0329.2000.00221.x

    Article  Google Scholar 

  • Mikhailova TA, Afanasieva LV, Kalugina OV, Shergina OV, Taranenko EN (2017) Changes in nutrition and pigment complex in pine (Pinus sylvestris L.) needles under technogenic pollution in Irkutsk region, Russia. J For Res 22(6):386–392

    Article  CAS  Google Scholar 

  • Mikhailova TA, Berezhnykh ED (1995) Anatomic changes in needle tissues affected by hydrogen fluoride. Lesovedenie 1:84–88. (in Russian)

    Google Scholar 

  • Mikhailova TA, Berezhnaya NS (2002) Assessment of Pine forests with prolonged exposure to air industrial emissions of the Irkutsk aluminum smelter. Geogr Nat Resour 1:43–49

    Google Scholar 

  • Mikhailova TA, Pleshanov AS, Afanasieva LV (2008) Cartographic assessment of pollution of forest ecosystems on the Baikal natural territory by technogenic emissions. Geogr Nat Resour 29(4):317–320. https://doi.org/10.1016/j.gnr.2008.10.015

    Article  Google Scholar 

  • Nabi A, Naeem M, Aftab T, Khan MMA, Ahmad P (2021) A comprehensive review of adaptations in plants under arsenic toxicity: physiological, metabolic and molecular interventions. Environ Pollut 290:118029. https://doi.org/10.1016/j.envpol.2021.118029

    Article  CAS  Google Scholar 

  • Nadgorska-Socha A, Kandziora-Ciupa M, Trzesicki M, Barczyk G (2017) Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes. Chemosphere 183:471–482. https://doi.org/10.1016/j.chemosphere.2017.05.128

    Article  CAS  Google Scholar 

  • Netsvetov M, Prokopuk Y, Holiaka D, Klisz M, Porté AJ, Puchałka R, Romenskyy M (2023) Is there Chornobyl nuclear accident signature in Scots pine radial growth and its climate sensitivity? Sci Total Environ 878:163132. https://doi.org/10.1016/j.scitotenv.2023.163132

    Article  CAS  Google Scholar 

  • Nikolaevsky VS (1979) Biological bases of gas resistance of plants (1979). Nauka, Moscow

  • Nuhoglu Y (2005) The harmful effects of air pollutants around the Yenikoy thermal power plant on architecture of Calabrian pine (Pinus brutia Ten.) needles. J Environ Biol 26:315–322

    Google Scholar 

  • Onuchin AA, Kozlova LN (1993) Structural and functional changes in pine needles under the influence of pollutants in the forest-steppe zone of Central Siberia. Lesovedenie 2:39–4

    Google Scholar 

  • Ozturk M, Coskuner KA, Serdar B, Atar F, Bilgili E (2022) Impact of white mistletoe (Viscum album ssp. abietis) infection severity on morphology, anatomy and photosynthetic pigment content of the needles of cilicican fir (Abies cilicica). Flora 294:152135. https://doi.org/10.1016/j.flora.2022.152135

    Article  Google Scholar 

  • Pallardy SG (2008) Physiology of woody plants, 3rd edn. Academic Press, Cambridge

  • Panda D (2015) Fluoride toxicity stress: physiological and biochemical consequences on plants. Int J Bio-res Env Agril Sci 1(1):70–84

    Google Scholar 

  • Pandey S, Kushwaha R (2005) Leaf anatomy and photosynthetic acclimation in Valeriana jatamansi L. grown under high and low irradiance. Photosynthetica 43:85–90

    Article  Google Scholar 

  • Parfenova EI, Kuzmina NA, Kuzmin SR, Tchebakova NM (2021) Climate warming impacts on distributions of Scots pine (Pinus sylvestris L.) seed zones and seed mass across Russia in the 21st century. Forests 12:1097. https://doi.org/10.3390/f12081097

    Article  Google Scholar 

  • Popov LV (1982) Southern taiga forests of Central Siberia, Irkutsk

  • Roderick ML, Berry SL, Noble IR (1999) The relationship between leaf composition and morphology at elevated CO2 concentrations. New Phytologist 143:63–72

    Article  Google Scholar 

  • Rodrigues DA, Filho SCV, dos Santos Farnese F, Rodrigues AA, Costa AC, Teles EMG, Rodrigues CL, Müller C (2018) Byrsonima basiloba as a bioindicator of simulated air pollutants: morphoanatomical and physiological changes in response to fluoride. Ecol Indic 89:301–308. https://doi.org/10.1016/j.ecolind.2018.02.019

    Article  CAS  Google Scholar 

  • Rozhkov AS, Mikhailova TA (1993) The Effects of fluorine-containing emissions on conifers. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Sazonova TA, Bolondinskiy VK, Pridacha VB (2011) Ecological and physiological characteristics of Scotch pine. Verso, Petrozavodsk

  • Schepaschenko DG, Shvidenko AZ, Shalaev VS (2008) Biological productivity and carbon budget of larch forests of Northern-East Russia Moscow State Forest University, Moscow

  • Seta-Koselska A, Szczuka E, Skórzyńska E (2014) Roadside larch trees (Larix Mill.) and its female generative organs as a biomonitor of air pollution. Polish J Environ Stud 23(3):867–874

    Google Scholar 

  • Shayakhmetova RI, Egorova NN (2016) Anatomical features of needles of common pine (Pinus sylvestris L.) growing in the Nizhnevartovsk district. Khanty-Mansiysk autonomous area-Yugra. Bulletin of the Altai State Agrarian University 6(140):72–77

    Google Scholar 

  • Shparyk YS, Parpan VI (2004) Heavy metal pollution and forest health in the Ukrainian Carpathians. Environ Pollut 130:55–63. https://doi.org/10.1016/j.envpol.2003.10.030

    Article  CAS  Google Scholar 

  • Singh R, Parihar P, Prasad SM (2018) Simultaneous exposure of sulphur and calcium hinder As toxicity: Up–regulation of growth, mineral nutrients uptake and antioxidants system. Ecotoxicol Environ Saf 161:318–331. https://doi.org/10.1016/j.ecoenv.2018.05.060

    Article  CAS  Google Scholar 

  • Skripal’shchikova LN, Dneprovskii IA, Stasova VV, Plyashechnik MA, Greshilova NV, Kalugina OV (2016) Morphological and anatomical characteristics of Scots pine needles under industrial pollution impact of Krasnoyarsk city. Sib J For Sci 3:46–56. (in Russian)

    Google Scholar 

  • Şofletea N, Mihai G, Ciocîrlan E, Curtu AL (2020) Genetic diversity and spatial genetic structure in isolated scots pine (Pinus sylvestris L.) populations native to eastern and southern carpathians. Forests 11:1047. https://doi.org/10.3390/f11101047

    Article  Google Scholar 

  • State report "On the state and environmental protection of the Irkutsk region in 2021 year” (2022). Limited Liability Company “Print”, Izhevsk

  • Stravinskiene V, Bartkevicius E, Plausinyte E (2013) Dendrochronological research of Scots pine (Pinus sylvestris L.) radial growth in vicinity of industrial pollution. Dendrochronologia 31:179–186. https://doi.org/10.1016/j.dendro.2013.04.001

    Article  Google Scholar 

  • Suvorova GG, Popova EV (2015) Photosynthetic productivity of coniferous forest stands in the Irkutsk region. Academic publishing house “Geo”, Novosibirsk (in Russian)

  • Takahashi M, Feng Z, Mikhailova TA, Kalugina OV, Shergina OV, Afanasieva LV, Heng R, Majid NM, Sase H (2020) Air pollution monitoring and tree and forest decline in East Asia: a review. Sci Total Environ 742:140288. https://doi.org/10.1016/j.scitotenv.2020.140288

    Article  CAS  Google Scholar 

  • Tulik M (2001) Cambial history of Scots pine trees (Pinus sylvestris) prior and after the Chernobyl accident as encoded in the xylem. Environ Exp Bot 46:1–10

    Article  CAS  Google Scholar 

  • Tselniker YUL, Malkina IS, Kovalev AG, Chmora SN, Mamaev VV, Molchanov AG (1993) Growth and gas exchange in forest trees. Nauka, Moscow

  • Tuzhilkina VV, Plyusnina SN (2020) Structural and functional alterations of Pine needles under the conditions of airborne technogenic pollution. Lesovedenie 6:537–547. https://doi.org/10.31857/S0024114820060091

    Article  Google Scholar 

  • Vacek S, Vacek Z, Bílek L, Simon J, Remeš J, Hůnová I, Král J, Putalová T, Mikeska M (2016) Structure, regeneration and growth of Scots pine (Pinus sylvestris L.) stands with respect to changing climate and environmental pollution. Silva Fennica 50(4):1564. https://doi.org/10.14214/sf.1564

    Article  Google Scholar 

  • Vashchuk LN, Shvidenko AZ (2006) Dynamics of forest spaces in the Irkutsk region. Irkutsk

  • Vike E (1999) Air-pollutant dispersal patterns and vegetation damage in the vicinity of three aluminium smelters in Norway. Scie Total Environ 236(1-3):75–90. https://doi.org/10.1016/s0048-9697(99)00268-5

    Article  CAS  Google Scholar 

  • Vike E, Hǎbjorg A (1995) Variation in fluoride content and leaf injury on plants associated with three aluminium smelters in Norway. Sci Total Environ 163(1-3):25–34. https://doi.org/10.1016/0048-9697(95)04497-O

    Article  CAS  Google Scholar 

  • Wannaz ED, Rodriguez JH, Wolfsberger T, Carreras HA, Pignata ML, Fangmeier A, Franzaring J (2012) Accumulation of aluminium and physiological status of tree foliage in the vicinity of a large aluminium smelter. Sci World J 2012:1–7. https://doi.org/10.1100/2012/865927

    Article  CAS  Google Scholar 

  • Waqas M, Khan S, Chao C, Shamshad I, Qamar Z, Khan K (2014) Quantification of PAHs and health risk via ingestion of vegetable in Khyber Pakhtunkhwa Province, Pakistan. Sci Total Environ 1(497–498):448–458. https://doi.org/10.1016/j.scitotent.2014,07.128

    Article  Google Scholar 

  • Weinstein LH, Davison A (2004) Fluorides in the environment: effects on plants and animals. CABI Publishing, Oxford

  • Weinstein LH, Davison AW (2003) Native plant species suitable as bioindicators and biomonitors for airborne fluoride. Environ Pollut 125:3–11. https://doi.org/10.1016/S0269-7491(03)00090-3

    Article  CAS  Google Scholar 

  • WRB. World Reference Base for Soil Resources (2006) A framework for international classification, correlation and communication. Food and Agriculture Organization of the United Nations, Rome

  • Xue L, Lang Y, Liu A, Liu J (2010) Application of CMB model for source apportionment of polycyclic aromatic hydrocarbons (PAHs) in coastal surface sediments from Rizhao offshore area, China. Environ Monit Assess 163(1–4):57–65. https://doi.org/10.1007/s10661-009-0816-x

    Article  CAS  Google Scholar 

  • Yodgorova D (2022) Features of the morpho-anatomical structure of the leaf of fruit trees under the influence of technogenic pollution of urban ecosystems. Sci Innov Int Sci J 1(7). https://doi.org/10.5281/zenodo.7274963

  • Zagirova SV (2015) Structure, pigment content and photosynthesis of Siberian Larch needles in northern and sub-arctic Urals. Contemp Probl Ecol 8(7):871–878. https://doi.org/10.1134/S1995425515070173

    Article  Google Scholar 

  • Zaitsev GN (1973) Technique of biometric calculations. Mathematical statistics to experimental botany. Science, Moscow

Download references

Acknowledgements

The research was carried out in the framework of the state tasks FWSS-2022-0002 122041100045-2 (SIPPB SB RAS) and FWSM-2021-0001 121030900138-8 (IGEB SB RAS).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. OVK: conceptualization, methodology, writing original draft, visualization; LVA: validation, investigation, reviewing and editing; TAM: reviewing and editing. The first draft of the manuscript was written by OVK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Larisa Vladimirovna Afanasyeva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The research article ensures objectivity and transparency in research and secures that accepted principles of ethical and professional conduct have been followed. This original research article does not contain any studies with human participants and animals performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalugina, O.V., Afanasyeva, L.V. & Mikhailova, T.A. Anatomical and morphological changes in Pinus sylvestris and Larix sibirica needles under impact of emissions from a large aluminum enterprise. Ecotoxicology 33, 66–84 (2024). https://doi.org/10.1007/s10646-023-02723-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-023-02723-x

Keywords

Navigation