Skip to main content
Log in

Contamination acts as a genotype-dependent barrier to gene flow, causing genetic erosion and fine-grained population subdivision in Mussels from the Strait of Istanbul

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

This study provides evidence of fine-grained genetic structuring in Mediterranean mussels (Mytilus galloprovincialis) from the Strait of Istanbul, caused by barriers to gene flow via contaminant-mediated selection. In this study, mitochondrial D-loop sequences were analyzed in mussels from 8 localities, all less than 30 kilometers apart, with differing contaminant loads. The results were: 1) Intra-population genetic differentiation (ΦST) between sites with high and low contaminant loads was high (up to 0.459), even at distances of only a few kilometers. 2) Genetic diversity was negatively correlated with the contaminant load (“genetic erosion”). 3) There was evidence of selection, based on haplotype frequencies and neutrality tests (Tajima’s D), with purifying selection at the most contaminated site and balancing selection at the least contaminated. 4) Genetic distance was not correlated with geographic distance (no isolation-by-distance), but was correlated with contaminant load at each site. 5) Population dendrograms and Bayesian estimators of migration indicated that gene flow between sites was affected by contamination. For the dendrograms of the sampling sites, the clades clustered according to contaminant load more than geographic distance. Overall, these results suggest that 1) contamination may serve as a genotype-dependent dispersal barrier (i.e., contamination may not affect total number of migrants, just the relative proportions of the haplotypes in the established immigrants), leading strong population differentiation over short distances, and 2) genetic erosion may occur by a combination of selection and altered patterns of haplotype-specific gene flow. These effects may be more pronounced in the Strait of Istanbul than in other locations because of the riverine nature and strong, uni-directional current of the strait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aoki Y (2017) Evaluation of in vivo mutagenesis for assessing the health risk of air pollutants. Genes Environ 39:e16. https://doi.org/10.1186/s41021-016-0064-6

    Article  CAS  Google Scholar 

  • Anderson C, Cunha L, Sechi P, Kille P, Spurgeon D (2017) Genetic variation in populations of the earthworm, Lumbricus rubellus, across contaminated mine sites. BMC Genet 18:97. https://doi.org/10.1186/s12863-017-0557-8

    Article  CAS  Google Scholar 

  • Arnold J (1993) Cytonuclear disequilibria in hybrid zones. Ann Rev Ecol Systemat 21:521–554

    Article  Google Scholar 

  • Beerli P, Mashayekhi S, Sadeghi M, Khodaei M, Shaw K (2019) Population genetic inference with MIGRATE. Curr Protoc Bioinform 68:e87. https://doi.org/10.1002/cpbi.87

    Article  Google Scholar 

  • Bianchi CN, Morri C (2000) Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Mar Pollut Bull 40:367–376

    Article  CAS  Google Scholar 

  • Bickham JW (2011) The four cornerstones of evolutionary toxicology. Ecotoxicology 20:497–502

    Article  CAS  Google Scholar 

  • Brady SP, Monosson E, Matson CW, Bickham JW (2017) Evolutionary toxicology: Toward a unified understanding of life’s response to toxic chemicals. Evol Appl 10:745–751

    Article  Google Scholar 

  • Breitwieser M, Vigneau E, Viricel A, Becquet V, Lacroix C, Erb M, Huet V, Churlaud C, Le Floch S, Guillot B, Graber M (2018) What is the relationship between the bioaccumulation of chemical contaminants in the variegated scallop Mimachlamys varia and its health status? A study carried out on the French Atlantic coast using the Path ComDim model. Sci Tot Environ 640:662–670

    Article  Google Scholar 

  • Cantillo A (1998) Comparison of results of mussel watch programs of the United States and France with worldwide mussel watch studies. Mar Pollut Bull 3:712–717

    Article  Google Scholar 

  • Calboli FC, Delahaut V, Deflem I, Hablützel PI, Hellemans B, Kordas A, Raeymaekers JA, Bervoets L, De Boeck G, Volckaert FA (2021) Association between Chromosome 4 and mercury accumulation in muscle of the three‐spined stickleback (Gasterosteus aculeatus). Evol Appl 14:2553–2567

    Article  CAS  Google Scholar 

  • Cao L, Kenchington E, Zouros E, Rodakis GC (2004) Evidence that the large noncoding sequence is the main control region of maternally and paternally transmitted mitochondrial genomes of the marine mussel (Mytilus spp.). Genetics 167:835–850

    Article  CAS  Google Scholar 

  • Crego-Prieto V, Arrojo-Fernández J, Prado A, Machado-Schiaffino G, Izquierdo JI, Roca A, Garcia-Vazquez E (2014) Cytological and population genetic changes in northwestern Iberian mussels after the prestige oil spill. Estuaries Coasts 37:995–1003

    Article  CAS  Google Scholar 

  • da Silva Banci KR, Mori GM, de Oliveira MA, Paganelli FL, Pereira MR, Pinheiro MA (2017) Can environmental pollution by metals change genetic diversity? Ucides cordatus (Linnaeus, 1763) as a study case in Southeastern Brazilian mangroves. Mar Pollut Bull 116:440–447

    Article  Google Scholar 

  • De Meester L, Vanoverbeke J, Kilsdonk LJ, Urban MC (2016) Evolving perspectives on monopolization and priority effects. Trends Ecol Evol 31:136–146

    Article  Google Scholar 

  • Di Giulio RT, Clark BW (2015) The Elizabeth River Story: a case study in evolutionary toxicology. J Toxicol Environ Health B Crit Rev 18:259–298

    Article  Google Scholar 

  • Díez-del-Molino D, García-Berthou E, Araguas RM, Alcaraz C, Vidal O, Sanz N, García-Marín JL (2018) Effects of water pollution and river fragmentation on population genetic structure of invasive mosquitofish. Sci Tot Environ 637:1372–1382

    Article  Google Scholar 

  • Ellingson RA, Krug PJ (2016) Reduced genetic diversity and increased reproductive isolation follow population‐level loss of larval dispersal in a marine gastropod. Evolution 70:18–37

    Article  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10:564–567

    Article  Google Scholar 

  • Giantsis IA, Kravva N, Apostolidis AP (2012) Genetic characterization and evaluation of anthropogenic impacts on genetic patterns in cultured and wild populations of mussels (Mytilus galloprovincialis) from Greece. Gen Mol Res 11:3814–3823

    Article  CAS  Google Scholar 

  • Giantsis IA, Mucci N, Randi E, Abatzopoulos TJ, Apostolidis AP (2014) Microsatellite variation of mussels (Mytilus galloprovincialis) in central and eastern Mediterranean: genetic panmixia in the Aegean and the Ionian Seas. J Mar Biol Assoc UK 94:797–809

    Article  Google Scholar 

  • Gilg MR, Hilbish TJ (2003) The geography of marine larval dispersal: coupling genetics with fine‐scale physical oceanography. Ecology 84:2989–2998

    Article  Google Scholar 

  • Gillespie RB, Guttman SI (1999) Chemical-induced changes in the genetic structure of populations: Effects on allozymes. In: Forbes VE ed Genetics and ecotoxicology. CRC Press, Boca Raton, FL, p 55–77

    Google Scholar 

  • Grant WS (2015) Problems and cautions with sequence mismatch analysis and Bayesian skyline plots to infer historical demography. J Hered 106:333–346

    Article  Google Scholar 

  • Gray JS (1997) Marine biodiversity: patterns, threats and conservation needs. Biodivers Conserv 6:153–175

    Article  Google Scholar 

  • Gouin N, Bertin A, Espinosa MI, Snow DD, Ali JM, Kolok AS (2019) Pesticide contamination drives adaptive genetic variation in the endemic mayfly Andesiops torrens within a semi-arid agricultural watershed of Chile. Environ Pollut 255:e113099. https://doi.org/10.1016/j.envpol.2019.113099

    Article  CAS  Google Scholar 

  • Guillot G, Rousset F (2013) Dismantling the Mantel tests. Methods Ecol Evol 4:336–344

    Article  Google Scholar 

  • Harrington B, Engelen J (2004) Inkscape. Software Available at http://www.inkscape.org

  • Hilbish TJ (1996) Population genetics of marine species: the interaction of natural selection and historically differentiated populations. J Exp Mar Biol Ecol 200:67–83

    Article  Google Scholar 

  • Inostroza PA, Vera-Escalona I, Wicht AJ, Krauss M, Brack W, Norf H (2016) Anthropogenic stressors shape genetic structure: insights from a model freshwater population along a land use gradient. Environ Sci Technol 50:11346–11356

    Article  CAS  Google Scholar 

  • Johannesson K, Johannesson B, Lundgren U (1995) Strong natural selection causes microscale allozyme variation in a marine snail. Proc Natl Acad Sci USA 92:2602–2606

    Article  CAS  Google Scholar 

  • Kalkan E, Kurtuluş A, Maraci Ö, Bilgin R (2011) Is the Bosphorus Strait a barrier to gene flow for the Mediterranean mussel, Mytilus galloprovincialis (Lamarck, 1819)? Mar Biol Res 7:690–700

    Article  Google Scholar 

  • Karacık B, Okay O, Henkelmann B, Bernhöft S, Schramm K (2009) Polycyclic aromatic hydrocarbons and effects on marine organisms in the Istanbul strait. Environ Int 35:599–606

    Article  Google Scholar 

  • Kasiotis KM, Emmanouil C, Anastasiadou P, Papadi-Psyllou A, Papadopoulos A, Okay O, Machera K (2015) Organic pollution and its effects in the marine mussel Mytilus galloprovincialis in eastern Mediterranean coasts. Chemosphere 119:S145–S152

    Article  CAS  Google Scholar 

  • Kohler SW, Provost GS, Fieck A, Kretz PL, Bullock WO, Putman DL, Sorge JA, Short JM (1991) Analysis of spontaneous and induced mutations in transgenic mice using a lambda ZAP/lacl shuttle vector. Environ Mol Mutagen 18:316–321

    Article  CAS  Google Scholar 

  • Korrida A, Jadallah SJ, Izaabel H, Benhissoune S (2010) Genetic diversity analysis of the natural populations of Mediterranean mussels [Mytilus galloprovincialis (Lmk.)] in Agadir Bay: Assessment of the molecular polymorphism and environmental impact. Atlas J Biol 1:18–25

    Article  Google Scholar 

  • Laporte M, Pavey SA, Rougeux C, Pierron F, Lauzent M, Budzinski H, Labadie P, Geneste E, Couture P, Baudrimont M, Bernatchez L (2016) RAD sequencing reveals within‐generation polygenic selection in response to anthropogenic organic and metal contamination in North Atlantic eels. Mol Ecol 25(Jan):219–37

    Article  CAS  Google Scholar 

  • Larsson J, Lönn M, Lind EE, Świeżak J, Smolarz K, Grahn M (2016) Sewage treatment plant associated genetic differentiation in the blue mussel from the Baltic Sea and Swedish west coast. PeerJ 4:e2628. https://doi.org/10.7717/peerj.2628

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  Google Scholar 

  • Lourenco CR, Nicastro KR, Serrao EA, Castilho R, Zardi GI (2015) Behind the mask: cryptic genetic diversity of Mytilus galloprovincialis along southern European and northern African shores. J Molluscan Stud 81(Aug):380–387

    Article  Google Scholar 

  • Luis JR, Comesana AS, Sanjuan A (2011) mtDNA differentiation in the mussel Mytilus galloprovincialis Lmk. on the Iberian Peninsula coast: first results. Mar Ecol 32:102–106

    Article  Google Scholar 

  • Ma XL, Cowles DL, Carter RL (2000) Effect of pollution on genetic diversity in the bay mussel Mytilus galloprovincialis and the acorn barnacle Balanus glandula. Mar Environ Res 50:559–563

    Article  CAS  Google Scholar 

  • Maas DL, Prost S, Bi K, Smith LL, Armstrong EE, Aji LP, Toha AH, Gillespie RG, Becking LE (2018) Rapid divergence of mussel populations despite incomplete barriers to dispersal. Mol Ecol 27:1556–1571

    Article  Google Scholar 

  • Marten A, Braendle M, Brandl R (2006) Habitat type predicts genetic population differentiation in freshwater invertebrates. Mol Ecol 15:2643–2651

    Article  CAS  Google Scholar 

  • Mavrakis D, Kontinakis N (2008) A queueing model of maritime traffic in Bosporus Straits. Simul Model Pract Theory 16:315–328

    Article  Google Scholar 

  • McMillan AM, Bagley MJ, Jackson SA, Nacci DE (2006) Genetic diversity and structure of an estuarine fish (Fundulus heteroclitus) indigenous to sites associated with a highly contaminated urban harbor. Ecotoxicology 15:539–548

    Article  CAS  Google Scholar 

  • Méndez M, Vögeli M, Tella JL, Godoy JA (2014) Joint effects of population size and isolation on genetic erosion in fragmented populations: finding fragmentation thresholds for management. Evol Appl 7:506–518

    Article  Google Scholar 

  • Mulvey M, Newman MC, Vogelbein W, Unger MA (2002) Genetic structure of Fundulus heteroclitus from PAH-contaminated and neighboring sites in the Elizabeth and York Rivers. Aquat Toxicol 61:195–209

    Article  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  CAS  Google Scholar 

  • Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 355-364

  • Okay O, Karacık B, Başak S, Henkelmann B, Bernhöft S, Schramm K (2009) PCB and PCDD/F in sediments and mussels of the Istanbul Strait (Turkey). Chemosphere 76:159–166

    Article  CAS  Google Scholar 

  • Okay O, Karacık B, Güngördü A, Ozmen M, Yılmaz A, Koyunbaba N, Yakan S, Korkmaz V, Henkelmann B, Schramm K (2014) Micro-organic pollutants and biological response of mussels in marinas and ship building/breaking yards in turkey. Sci Total Environ 496:165–178

    Article  CAS  Google Scholar 

  • Okay OS, Karacık B, Henkelmann B, Schramm KW (2011) Distribution of organochlorine pesticides in sediments and mussels from the Istanbul Strait. Environ Monit Assess 176:51–65

    Article  CAS  Google Scholar 

  • Okay OS, Ozmen M, Güngördü A, Yılmaz A, Yakan SD, Karacık B, Tutak B, Schramm K (2016) Heavy metal pollution in sediments and mussels: assessment by using pollution indices and metallothionein levels. Environ Monit Assess 188:352

    Article  Google Scholar 

  • Osterberg JS, Cammen KM, Schultz TF, Clark BW, Di Giulio RT (2018) Genome-wide scan reveals signatures of selection related to pollution adaptation in non-model estuarine Atlantic killifish (Fundulus heteroclitus). Aquat Toxicol 200:73–82

    Article  CAS  Google Scholar 

  • Oziolor EM, Bickham JW, Matson CW (2017) Evolutionary toxicology in an omics world. Evol Appl 10:752–761

    Article  Google Scholar 

  • Oziolor EM, DeSchamphelaere K, Lyon D, Nacci D, Poynton H (2020) Evolutionary toxicology-an informational tool for chemical regulation? Environ.Toxicol Chem 39:257–268

    Article  CAS  Google Scholar 

  • Oziolor EM, Matson CW (2018) Adaptation in polluted waters: lessons from killifish. In: Burggren W, Dubansky B (eds) Development and environment. Springer, Cham, p 355–375. 10.1007/978-3-319-75935-7_14

    Google Scholar 

  • Oziolor EM, Reid NM, Yair S, Lee KM, Guberman VerPloeg S, Bruns PC, Shaw JR, Whitehead A, Matson CW (2019) Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science 364:455–457

    Article  CAS  Google Scholar 

  • Paterno M, Bat L, Souissi JB, Boscari E, Chassanite A, Congiu L, Guarnieri G, Kruschel C, Mačić V, Marino IA, Micu D (2019) A Genome-Wide Approach to the Phylogeography of the Mussel Mytilus galloprovincialis in the Adriatic and the Black Seas. Front Mar Sci 6:e566. https://doi.org/10.3389/fmars.2019.00566

    Article  Google Scholar 

  • Puritz JB, Toonen RJ (2011) Coastal pollution limits pelagic larval dispersal. Nat Commun 2:e226. https://doi.org/10.1038/ncomms1238

    Article  CAS  Google Scholar 

  • Quesada H, Beynon C, Skibinski D (1995a) A mitochondrial DNA discontinuity in the mussel Mytilus galloprovincialis Lmk: pleistocene vicariance biogeography and secondary intergradation. Mol Biol Evol 12:521–524

    CAS  Google Scholar 

  • Quesada H, Warren M, Skibinski DO (1998) Nonneutral evolution and differential mutation rate of gender-associated mitochondrial DNA lineages in the marine mussel Mytilus. Genetics 149:1511–1526

    Article  CAS  Google Scholar 

  • Quesada H, Zapata C, Alvarez G (1995b) A multilocus allozyme discontinuity in the mussel Mytilus galloprovincialis: the interaction of ecological and life-history factors. Mar Ecol Prog Ser 116:99–115

    Article  CAS  Google Scholar 

  • Quina AS, Durão AF, Muñoz-Muñoz F, Ventura J, da Luz Mathias M (2019) Population effects of heavy metal pollution in wild Algerian mice (Mus spretus). Ecotoxicol Environ Saf 171:414–424

    Article  CAS  Google Scholar 

  • Reid NM, Proestou DA, Clark BW, Warren WC, Colbourne JK, Shaw JR, Karchner SI, Hahn ME, Nacci D, Oleksiak MF, Crawford DL (2016) The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354:1305–1308

    Article  CAS  Google Scholar 

  • Ribeiro ÂM, Canchaya CA, Penaloza F, Galindo J, da Fonseca RR (2019) Population genomic footprints of environmental pollution pressure in natural populations of the Mediterranean mussel. Mar Genom 45:11–15

    Article  Google Scholar 

  • Rinner BP, Matson CW, Islamzadeh A, McDonald TJ, Donnelly KC, Bickham JW (2011) Evolutionary toxicology: contaminant-induced genetic mutations in mosquitofish from Sumgayit, Azerbaijan. Ecotoxicology 20:365–376

    Article  CAS  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  CAS  Google Scholar 

  • Rocha-Olivares A, Fleeger JW, Foltz DW (2004) Differential tolerance among cryptic species: a potential cause of pollutant-related reductions in genetic diversity. Environ Toxicol Chem 23:2132–2137

    Article  CAS  Google Scholar 

  • Ruggeri P, Du X, Crawford DL, Oleksiak MF (2019) Evolutionary toxicogenomics of the striped killifish (Fundulus majalis) in the New Bedford Harbor (Massachusetts, USA). Int J Mol Sci 20:e1129. https://doi.org/10.3390/ijms20051129

    Article  CAS  Google Scholar 

  • Rumisha C, Leermakers M, Elskens M, Mdegela RH, Gwakisa P, Kochzius M (2017) Genetic diversity of the giant tiger prawn Penaeus monodon in relation to trace metal pollution at the Tanzanian coast. Mar Pollut Bull 114:759–767

    Article  CAS  Google Scholar 

  • Rusconi M, Bettinetti R, Polesello S, Stefani F (2018) Evolutionary toxicology as a tool to assess the ecotoxicological risk in freshwater ecosystems. Water 10:490

    Article  Google Scholar 

  • Schmidt PS, Rand DM (1999) Intertidal microhabitat and selection at mpi: Interlocus contrasts in the northern acorn barnacle, Semibalanus balanoides. Evolution 135–146

  • Shugart LR, Theodorakis C (1996) Genetic ecotoxicology: the genotypic diversity approach. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 113:273–276

    Article  Google Scholar 

  • Shugart LR, Theodorakis CW, Bickham AM, Bickham JW (2003) Genetic effects of contaminant exposure and potential impacts on animal populations. In: Hoffman DJ, Rattner BA, Burton Jr GA, Cairns Jr J (eds.) Handbook of ecotoxicology. Lewis Publishers, Boca Raton FL, USA, p 1129–1147

    Google Scholar 

  • Shugart LR, Theodorakis CW, Bickham JW (2010) Evolutionary toxicology. In: DeWoody JA, Bickham JW, Michler CH, Nichols KM, Rhodes GE, Woeste KE (eds.) Molecular approaches in natural resource conservation and management. Cambridge University Press, Cambridge, UK, p 320–362

    Chapter  Google Scholar 

  • Śmietanka B, Burzyński A, Hummel H, Wenne R (2014) Glacial history of the European marine mussels Mytilus, inferred from distribution of mitochondrial DNA lineages. Heredity 20113:250–258

    Article  Google Scholar 

  • Śmietanka B, Burzyński A, Wenne R (2009) Molecular population genetics of male and female mitochondrial genomes in European mussels Mytilus. Mar Biol 156:913–25

    Article  Google Scholar 

  • Sobral O, Marin-Morales MA, Ribeiro R (2013) Could contaminant induced mutations lead to a genetic diversity overestimation? Ecotoxicology 22:838–846

    Article  CAS  Google Scholar 

  • Soldatov A, Gostyukhina O, Golovina I (2007) Antioxidant enzyme complex of tissues of the bivalve Mytilus galloprovincialis lam. under normal and oxidative-stress conditions: a review. Appl Biochem Microbiol 43:556–562

    Article  CAS  Google Scholar 

  • Štambuk A, Šrut M, Šatović Z, Tkalec M, Klobučar GI (2013) Gene flow vs. pollution pressure: Genetic diversity of Mytilus galloprovincialis in eastern Adriatic. Aquat toxicol 136:22–31

    Article  Google Scholar 

  • Švara V, Michalski SG, Krauss M, Schulze T, Geuchen S, Brack W, Luckenbach T (2022) Reduced genetic diversity of freshwater amphipods in rivers with increased levels of anthropogenic organic micropollutants. Evol Appl 15:976–991

    Article  Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    Article  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Tania L, Montse P, Pablo P (2011) Temporal estimates of genetic diversity in some Mytilus galloprovincialis populations impacted by the prestige oil-spill. Cont Shelf Res 31:466–475

    Article  Google Scholar 

  • Teacher A, Griffiths D (2011) HapStar: automated haplotype network layout and visualization. Mol Ecol Resour 11:151–153

    Article  CAS  Google Scholar 

  • Teske PR, Golla TR, Sandoval-Castillo J, Emami-Khoyi A, Van der Lingen CD, Von der Heyden S, Chiazzari B, Jansen van Vuuren B, Beheregaray LB (2018) Mitochondrial DNA is unsuitable to test for isolation by distance. Sci Rep 8:8448. https://doi.org/10.1038/s41598-018-25138-9

    Article  CAS  Google Scholar 

  • Theodorakis C, Bickham J, Bartell S (2021) Obituary: Lee Raleigh Shugart. Ecotoxicology 30:1949–1956

    Article  CAS  Google Scholar 

  • Theodorakis CW (2001) Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment. Ecotoxicology 10:245–256

    Article  CAS  Google Scholar 

  • Theodorakis CW (2003) Establishing causality between population genetic alterations and environmental contamination in aquatic organisms. Hum Ecol Risk Assess 9:37–58

    Article  Google Scholar 

  • Theodorakis CW, Wirgin II (2002) Genetic responses as population-level biomarkers of stress in aquatic ecosystems. In: Adams SM (ed) Biological indicators of aquatic ecosystem stress. American Fisheries Society, Bethesda, MD, p 149–185

    Google Scholar 

  • Theodorakis CW, Bickham JW, Lamb T, Medica PA, Lyne TB (2001) Integration of genotoxicity and population genetic analyses in kangaroo rats (Dipodomys merriami) exposed to radionuclide contamination at the Nevada test site, US. Environ Toxicol Chem 20:317–326

    Article  CAS  Google Scholar 

  • Theodorakis CW, Lee KL, Adams SM, Law CB (2006) Evidence of altered gene flow, mutation rate, and genetic diversity in redbreast sunfish from a pulp-mill-contaminated river. Environ Sci Technol 40:377–386

    Article  CAS  Google Scholar 

  • Theodorakis CW, Shugart LR (1999) Natural selection in contaminated environments: a case study using RAPD genotypes. In: Forbes VE ed Genetics and ecotoxicology. CRC Press, Boca Raton, FL, p 123–149

    Google Scholar 

  • van Straalen NM, Timmermans MJTN (2002) Genetic variation in toxicant-stressed populations: an evaluation of the “genetic erosion” hypothesis. Hum Ecol Risk Assess 8:983–1002

    Article  Google Scholar 

  • Venier P, Tallandini L, Bisol PM (2003) Characterization of coastal sites by applying genetic and genotoxicity markers in Mytilus galloprovincialis and Tapes philippinarum. Chem Ecol 19:113–128

    Article  CAS  Google Scholar 

  • Wagner DN, Baris TZ, Dayan DI, Du X, Oleksiak MF, Crawford DL (2017) Fine-scale genetic structure due to adaptive divergence among microhabitats. Heredity 118:594–604

    Article  CAS  Google Scholar 

  • Ward RD, Woodwark M, Skibinski DO (1994) A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J Fish Biol 44:213–232

    Article  Google Scholar 

  • Watanabe T, Takashima M, Kasai T, Hirayama T (1997) Comparison of the mutational specificity induced by environmental genotoxin nitrated polycyclic aromatic hydrocarbons in salmonella Typhimuriumhis genes. Mutat Res-Gen Tox Environ Mutagen 394:103–112

    Article  CAS  Google Scholar 

  • Weng SW, Lin TK, Wang PW, Chen SD, Chuang YC, Liou CW (2013) Single nucleotide polymorphisms in the mitochondrial control region are associated with metabolic phenotypes and oxidative stress. Gene 531:370–376

    Article  CAS  Google Scholar 

  • Whitehead A, Clark BW, Reid NM, Hahn ME, Nacci D (2017) When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish (Fundulus heteroclitus) populations. Evol Appl 10:762–783

    Article  Google Scholar 

  • Yakan S, Henkelmann B, Schramm K, Okay O (2011) Bioaccumulation depuration kinetics and effects of benzo (a) anthracene on Mytilus galloprovincialis. Mar Pollut Bull 63:471–476

    Article  CAS  Google Scholar 

  • Yang W, Ding J, Wang S, Yang Y, Song G, Zhang Y (2020) Variation in genetic diversity of tree sparrow (Passer montanus) population in long-term environmental heavy metal polluted areas. Environ Pollut 263:e114396. https://doi.org/10.1016/j.envpol.2020.114396

    Article  CAS  Google Scholar 

  • Yap CK, Chong CM, Tan SG (2011) Allozyme polymorphisms in horseshoe crabs, Carcinoscorpius rotundicauda, collected from polluted and unpolluted intertidal areas in Peninsular Malaysia. Environ Monit Assess 174:389–400

    Article  CAS  Google Scholar 

  • Zvuloni A, Mokady O, Al-Zibdah M, Bernardi G, Gaines SD, Abelson A (2008) Local scale genetic structure in coral populations: a signature of selection. Mar Pollut Bull 56:430–438

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of Lee R. Shugart (December 23, 1931–September 20, 2021; Theodorakis et al. 2021). The authors would like to thank Southern Illinois University Edwardsville for funding a sabbatical project for C. Theodorakis; and Helmholz Zentrum, Istanbul Technical University, and Southern Illinois University Edwardsville for use of equipment and facilities; and the University of Illinois UIUC Core Sequencing Facility for a copy of Sequencher 5.0. The authors would also like to thank Dr. David Duvernell, SIUE (presently at University of Missouri Rolla), for assistance with and advice on genetic analyses, an anonymous Turkish youth for help in collecting samples from Site A, and an anonymous Turkish gentleman for assistance in collecting samples from Site C.

Funding

The work was supported, in part by the Genome Analysis Center (GAC) of the Helmholtz Zentrum München headed by Prof. Adamski, and by Southern Illinois University Edwardsville.

Author information

Authors and Affiliations

Authors

Contributions

CWT collected the mussels, conducted DNA extractions and sequencing reactions, analyzed some of the data, wrote most of the manuscript. M-AM analyzed much of the data, wrote some of the MS. OO assisted with the mussel collection and provided laboratory space and some supplies and reagents for dissection and DNA extraction. SDY assisted with the mussel collection and dissection and DNA extraction in the laboratory. K-WS provided laboratory space, supplies and reagents for DNA analysis, and funds for sequencing at the Helmholz core sequencing facility.

Corresponding author

Correspondence to Christopher W. Theodorakis.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theodorakis, C.W., Meyer, MA., Okay, O. et al. Contamination acts as a genotype-dependent barrier to gene flow, causing genetic erosion and fine-grained population subdivision in Mussels from the Strait of Istanbul. Ecotoxicology 33, 47–65 (2024). https://doi.org/10.1007/s10646-023-02725-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-023-02725-9

Keywords

Navigation