Skip to main content
Log in

Strong coupling between colloidal quantum dots and dielectric film at room temperature

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this study, the angle-resolved photoluminescence and reflection spectra from colloidal quantum dots on materials with low-refractive-index/high-refractive-index structure at room temperature are investigated. The photoluminescence spectra for the materials split into two main spectral peaks at various angles. Different kinds of dielectric materials and different thicknesses are used to verify the PL spectral splitting phenomena. By comparing the PL spectrum and RL spectrum of dielectric materials on substrates with different refractive indexes, the PL spectral splitting is attributed to strong coupling between the quantum dots exciton and asymmetric F–P cavity formed in the low-refractive-index/high-refractive-index material. The loss of the F–P mode decreases due to the destructive interference effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time, but may be obtained from the author upon reasonable request.

References

  1. A.F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, F. Nori, Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–41 (2009)

    Article  Google Scholar 

  2. F. Liu, A.J. Brash, J. O’Hara, L.M.P.P. Martins, C.L. Phillips, R.J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I.E. Itskevich, L.R. Wilson, M.S. Skolnick, A. Mark Fox, High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018)

    Article  ADS  Google Scholar 

  3. K. Shandarova, C.E. Rüter, D. Kip, K.G. Makris, D.N. Christodoulides, O. Peleg, M. Segev, Experimental observation of Rabi oscillations in photonic lattices. Phys. Rev. Lett. 102, 123905 (2009)

    Article  ADS  Google Scholar 

  4. T. Ellenbogen, K.B. Crozier, Exciton-polariton emission from organic semiconductor optical waveguides. Phys. Rev. B 84, 161304 (2011)

    Article  ADS  Google Scholar 

  5. X.S. Xu, X.Y. Li, Enhanced emission of charged-exciton polaritons from colloidal quantum dots on a SiN/SiO2 slab waveguide. Sci. Rep. 5, 9760 (2015)

    Article  ADS  Google Scholar 

  6. R. Esteban, J. Aizpurua, G.W. Bryant, Strong coupling of single emitters interacting with phononic infrared antennae. New J. Phys. 16, 013052 (2014)

    Article  ADS  Google Scholar 

  7. J.D. Breeze, E. Salvadori, J. Sathian, N.M. Alford, C.W.M. Kay, Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states. npj Quant. Inf. 3, 40 (2017)

    Article  ADS  Google Scholar 

  8. G. Christmann, R. Butté, E. Feltin, J.F. Carlin, N. Grandjean, Room temperature polariton lasing in a GaN∕AlGaNGaN∕AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008)

    Article  ADS  Google Scholar 

  9. A. Amo, T.C.H. Liew, C. Adrados, R. Houdré, E. Giacobino, A.V. Kavokin, A. Bramati, Exciton-polariton spin switches. Nat. Photon. 4, 361–366 (2010)

    Article  ADS  Google Scholar 

  10. M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, D. Sanvitto, Control and ultrafast dynamics of a two-fluid polariton switch. Phys. Rev. Lett. 109, 266407 (2012)

    Article  ADS  Google Scholar 

  11. P. Grangier, G. Reymond, N. Schlosser, Implementations of quantum computing using cavity quantum electrodynamics schemes. Fortschr. Phys. 48, 859–874 (2000)

    Article  Google Scholar 

  12. R. Chikkaraddy, B. de Nijs, F. Benz, S.J. Barrow, O.A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J.J. Baumberg, Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–131 (2016)

    Article  ADS  Google Scholar 

  13. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–204 (2004)

    Article  ADS  Google Scholar 

  14. M. Wersäll, J. Cuadra, T.J. Antosiewicz, S. Balci, T. Shegai, Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons. Nano Lett. 17, 551–558 (2017)

    Article  ADS  Google Scholar 

  15. J. Bellessa, C. Symonds, J. Laverdant, J.M. Benoit, J.C. Plenet, S. Vignoli, Strong coupling between plasmons and organic semiconductors. Electronics 3, 303–313 (2014)

    Article  Google Scholar 

  16. N.C. Giebink, G.P. Wiederrecht, M.R. Wasielewski, Strong exciton-photon coupling with colloidal quantum dots in a high-Q bilayer microcavity. Appl. Phys. Lett. 98, 081103 (2011)

    Article  ADS  Google Scholar 

  17. M.E. Kleemann, R. Chikkaraddy, E.M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A.C. de Pury, C. Große, B. de Nijs, J. Mertens, A. Tartakovskii, J.J. Baumberg, Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun. 8, 1296 (2017)

    Article  ADS  Google Scholar 

  18. K. Goto, K. Yamashita, H. Yanagi, T. Yamao, S. Hotta, Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation. Appl. Phys. Lett. 109, 061101 (2016)

    Article  ADS  Google Scholar 

  19. J. Bellessa, C. Bonnand, J.C. Plenet, J. Mugnier, Strong coupling between surface plasmons and excitons in an organic semiconductor. Phy. Rev. Lett. 93(3), 036404 (2009)

    Article  ADS  Google Scholar 

  20. X.S. Xu, S.Y. Jin, Strong coupling of single quantum dots with low-refractive-index/high-refractive-index materials at room temperature. Sci. Adv. 6, eabb3095 (2020)

    Article  ADS  Google Scholar 

  21. J. Wiersig, Modes near avoided resonance crossings in optical microcavities. Phys. Rev. Lett. 97, 253901 (2006)

    Article  ADS  Google Scholar 

  22. J.P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forche, Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 192 (2004)

    Article  ADS  Google Scholar 

  23. F. Todisco, M.D. Giorgi, M. Esposito, L.D. Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, D. Sanvitto, Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation. ACS Photon. 5, 143 (2018)

    Article  Google Scholar 

  24. C.W. Hsu, B. Zhen, S.L. Chua, S.G. Johnson, J.D. Joannopoulos, M. Soljačic, Bloch surface eigenstates within the radiation continuum. Light Sci. Appl. 2, e84 (2013)

    Article  Google Scholar 

  25. C.L. Zou, J.M. Cui, F.W. Sun, X. Xiong, X.B. Zou, Z.F. Han, G.C. Guo, Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photon. Rev. 9, 114–119 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grant Nos. 92165202), the Strategic Priority Research Program (A) of Chinese Academy of Sciences (Grant No. XDA18040300), and the Innovation progaram for Quantum Science and Technology (Grant No. 2021ZD0300701).

Author information

Authors and Affiliations

Authors

Contributions

Xu did all the work of the manuscript.

Corresponding author

Correspondence to Xingsheng Xu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X. Strong coupling between colloidal quantum dots and dielectric film at room temperature. Appl. Phys. B 130, 23 (2024). https://doi.org/10.1007/s00340-023-08158-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08158-w

Navigation