Skip to main content
Log in

Ultrahigh-Strength and Ductile AISI 316L Steel Processed by Cryogenic Rolling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

We demonstrate that cryogenic rolling can simultaneously achieve ultrahigh strength and significant ductility in 316L steel, thereby overcoming the existing limits of its tensile properties. The cryogenic-rolled 316L steel exhibited a 1.1 GPa yield strength (YS) at 298 K. Typically, deformed materials exhibit strain softening immediately after yielding with poor uniform ductility. However, during tensile straining, the cryogenic-rolled 316L steel underwent significant strain hardening despite being severely deformed, thus demonstrating exceptional uniform ductility. Consequently, the cryogenic-rolled 316L steel showed a significantly superior strength–ductility combination, impossible with typical cold rolling. The significantly increased YS of the cryogenic-rolled 316L steel resulted from the combined effect of the presence of the hard martensite phase and the refined austenite grains formed by high-density deformation bands. The significant strain hardening in the cryogenic-rolled 316L steel was possible because the low density of dislocations in the austenite matrix enabled the generation of substantial back stress when newly formed dislocations accumulated at obstacles such as grain boundaries during tensile deformation. Partial dislocations in the cryogenic-rolled 316L steel also contributed to considerable strain hardening by suppressing cross-slip during tensile deformation at 298 K—a well-known major mechanism that weakens strain hardening by facilitating dynamic recovery in metallic materials. Our findings suggest a new microstructural strategy for developing commercial steels with superior tensile properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Marshall, Austenitic Stainless Steels: Microstructure and Mechanical Properties (Springer, Dordrecht, 1984)

    Google Scholar 

  2. M.F. McGuire, Stainless Steels for Design Engineers (ASM International, Materials Park, 2008)

    Book  Google Scholar 

  3. Y. Wei, F. Zhan, Z. Li, Y. Shi, M. Zhu, Y. Zheng, J. Sheng, P. La, Mater. Sci. Eng. A 859, 144194 (2022). https://doi.org/10.1016/j.msea.2022.144194

    Article  CAS  Google Scholar 

  4. D. Molnár, X. Sun, S. Lu, W. Li, G. Engberg, L. Vitos, Mater. Sci. Eng. A 759, 490–497 (2019). https://doi.org/10.1016/j.msea.2019.05.079

    Article  CAS  Google Scholar 

  5. F.K. Yan, G.Z. Liu, N.R. Tao, K. Lu, Acta Mater. 60, 1059–1071 (2012). https://doi.org/10.1016/j.actamat.2011.11.009

    Article  CAS  Google Scholar 

  6. S. Tanhaei, K. Gheisari, S.R. Alavi Zaree, Int. J. Miner. Metall. Mater. 25, 630–640 (2018). https://doi.org/10.1007/s12613-018-1610-y

    Article  CAS  Google Scholar 

  7. J. Li, B. Gao, Z. Huang, H. Zhou, Q. Mao, Y. Li, Vacuum 157, 128–135 (2018). https://doi.org/10.1016/j.vacuum.2018.08.049

    Article  CAS  Google Scholar 

  8. R. Zheng, M. Liu, Z. Zhang, K. Ameyama, C. Ma, Scr. Mater. 169, 76–81 (2019). https://doi.org/10.1016/j.scriptamat.2019.05.017

    Article  CAS  Google Scholar 

  9. D.G. Kim, Y.H. Jo, J. Yang, W.-M. Choi, H.S. Kim, B.-J. Lee, S.S. Sohn, S. Lee, Scr. Mater. 171, 67–72 (2019). https://doi.org/10.1016/j.scriptamat.2019.06.026

    Article  CAS  Google Scholar 

  10. S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Körmann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Adv. Mater. 31, 1807142 (2019). https://doi.org/10.1002/adma.201807142

    Article  CAS  Google Scholar 

  11. H. Park, J. Lee, R.E. Kim, S. Son, S.Y. Ahn, H.S. Kim, Met. Mater. Int. (2023). https://doi.org/10.1007/s12540-023-01532-5

    Article  Google Scholar 

  12. H.D. Park, J.W. Won, J. Moon, H.S. Kim, H. Sung, J.B. Seol, J.W. Bae, J.G. Kim, Met. Mater. Int. 29, 95–107 (2023). https://doi.org/10.1007/s12540-022-01215-7

    Article  CAS  Google Scholar 

  13. S. Tan, B. Song, H. Chen, X. Tan, R. Qiu, T. Liu, N. Guo, S. Guo, Met. Mater. Int. 29, 2197–2206 (2023). https://doi.org/10.1007/s12540-022-01369-4

    Article  CAS  Google Scholar 

  14. J.W. Won, S.-W. Choi, J.-K. Hong, B.-C. Suh, J.H. Lee, Mater. Sci. Eng. A 798, 140328 (2020). https://doi.org/10.1016/j.msea.2020.140328

    Article  CAS  Google Scholar 

  15. I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 60, 5791–5802 (2012). https://doi.org/10.1016/j.actamat.2012.07.018

    Article  CAS  Google Scholar 

  16. J. Yang, Y.H. Jo, D.W. Kim, W.M. Choi, H.S. Kim, B.J. Lee, S.S. Sohn, S. Lee, Mater. Sci. Eng. A 772, 138809 (2020). https://doi.org/10.1016/j.msea.2019.138809

    Article  CAS  Google Scholar 

  17. S.T. Pisarik, D.C. Van Aken, Metall. Mater. Trans. A 47, 1009–1018 (2016). https://doi.org/10.1007/s11661-015-3265-x

    Article  CAS  Google Scholar 

  18. G.B. Olson, M. Cohen, Metall. Trans. 7, 1897–1904 (1976). https://doi.org/10.1007/bf02659822

    Article  Google Scholar 

  19. Y. Tian, O.I. Gorbatov, A. Borgenstam, A.V. Ruban, P. Hedström, Metall. Mater. Trans. A 48, 1–7 (2017). https://doi.org/10.1007/s11661-016-3839-2

    Article  CAS  Google Scholar 

  20. K. Spencer, J.D. Embury, K.T. Conlon, M. Véron, Y. Bréchet, Mater. Sci. Eng. A 387–389, 873–881 (2004). https://doi.org/10.1016/j.msea.2003.11.084

    Article  CAS  Google Scholar 

  21. J. Liu, Y. Jin, X. Fang, C. Chen, Q. Feng, X. Liu, Y. Chen, T. Suo, F. Zhao, T. Huang, H. Wang, X. Wang, Y. Fang, Y. Wei, L. Meng, J. Lu, W. Yang, Sci. Rep. 6, 35345 (2016). https://doi.org/10.1038/srep35345

    Article  CAS  Google Scholar 

  22. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527, 2738–2746 (2010). https://doi.org/10.1016/j.msea.2010.01.004

    Article  CAS  Google Scholar 

  23. Y. Wang, G. Wang, N. Xiang, Y. Zheng, J. Mater. Res. Technol. 24, 8856–8865 (2023). https://doi.org/10.1016/j.jmrt.2023.05.107

    Article  CAS  Google Scholar 

  24. J. Macchi, S. Gaudez, G. Geandier, J. Teixeira, S. Denis, F. Bonnet, S.Y.P. Allain, Mater. Sci. Eng. A 800, 140249 (2021). https://doi.org/10.1016/j.msea.2020.140249

    Article  CAS  Google Scholar 

  25. I.S. Yasnikov, Y. Estrin, A. Vinogradov, Acta Mater. 141, 18–28 (2017). https://doi.org/10.1016/j.actamat.2017.08.069

    Article  CAS  Google Scholar 

  26. J.W. Won, J.H. Lee, J.S. Jeong, S.W. Choi, D.J. Lee, J.K. Hong, Y.T. Hyun, Scr. Mater. 178, 94–98 (2020). https://doi.org/10.1016/j.scriptamat.2019.11.009

    Article  CAS  Google Scholar 

  27. S. Wei, C.C. Tasan, Acta Mater. 200, 992–1007 (2020). https://doi.org/10.1016/j.actamat.2020.09.056

    Article  CAS  Google Scholar 

  28. J. Talonen, H. Hänninen, Acta Mater. 55, 6108–6118 (2007). https://doi.org/10.1016/j.actamat.2007.07.015

    Article  CAS  Google Scholar 

  29. S. Asgari, E. El-danaf, S.R. Kalidindi, R.D. Doherty, Metall. Mater. Trans. A 28, 1781–1795 (1997). https://doi.org/10.1007/s11661-997-0109-3

    Article  Google Scholar 

  30. Y. Wei, Q. Lu, Z. Kou, T. Feng, Q. Lai, Mater. Sci. Eng. A 862, 144424 (2023). https://doi.org/10.1016/j.msea.2022.144424

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Korea government through the Fundamental Research Program of Korea Institute of Materials Science (PNK8190), the Nano & Material Technology Development Program (2021M3H4A6A03103720), the Technology Innovation Program (20011372), and the National Research Foundation (202300212657).

Author information

Authors and Affiliations

Authors

Contributions

JWW: conceptualization, methodology, data curation, writing, funding acquisition; SL: methodology, data curation; YKK: methodology, data curation; YTH: investigation; DWL: investigation.

Corresponding author

Correspondence to Jong Woo Won.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, J.W., Lee, S., Kim, YK. et al. Ultrahigh-Strength and Ductile AISI 316L Steel Processed by Cryogenic Rolling. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-023-01596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-023-01596-3

Keywords

Navigation