Skip to main content
Log in

The Influence of Spurious Periodicity on the Flow Characteristics of a Separated Turbulent Boundary Layer with and Without Active Flow Control

  • Research
  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this study, we have investigated the effects of inflow spurious periodicity on a turbulent boundary layer subjected to a weak pressure gradient due to a gently backward ramp utilizing wall-resolved large-eddy simulation. The spurious periodicity is generated through repeating segments of inflow data produced via a long boundary layer precursor simulation. Using a short segment of inflow data and recycling it while introduces a spurious periodicity, can help to reduce the computational cost of the precursor simulation as well as the storage needed to record the massive data. However, there is no quantitative analysis as to how far the results are affected by the spurious periodicity in case of a separated turbulent boundary layer. This study compares several cases with various inflow segment lengths with respect to a reference case with no periodicity. The inflow segments are created by truncating the reference case and thus an intrinsic disturbance is associated with them. An additional case without the disturbance is also considered to examine the latter’s influence on the results. First- and second-order flow statistics are assessed, and spectral analysis is conducted to scrutinize the impact of spurious periodicity. An additional second-order parameter is introduced as an indicator of the spurious periodicity influence. Finally, an especial configuration with active flow control using a synthetic jet actuator is investigated with and without the spurious periodicity. This will help to assess if the dominant frequency of the active flow control is affected by recycling inflow data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Araya, G., Castillo, L.: Direct numerical simulations of turbulent thermal boundary layers subjected to adverse streamwise pressure gradients. Phys. Fluids 25(9), 095107 (2013)

    ADS  Google Scholar 

  • Araya, G., Castillo, L., Meneveau, C., Jansen, K.: A dynamic multi-scale approach for turbulent inflow boundary conditions in spatially developing flows. J. Fluid Mech. 670, 581–605 (2011)

    ADS  Google Scholar 

  • Asgari, E., Tadjfar, M.: Assessment of four inflow conditions on large-eddy simulation of a gently curved backward-facing step. J. Turbul. 18(1), 61–86 (2017)

    ADS  MathSciNet  Google Scholar 

  • Asgari, E., Tadjfar, M.: Active control of flow over a rounded ramp by means of single and double adjacent rectangular synthetic jet actuators. Comput. Fluids 190, 98–113 (2019)

    MathSciNet  Google Scholar 

  • Asgari, E., Tadjfar, M.: Role of phase-difference between two adjacent rectangular synthetic jet actuators in active control of flow over a rounded ramp. Phys. Fluids 34(2), 025101 (2022)

    ADS  CAS  Google Scholar 

  • Asgari, E., Saeedi, M., Etemadi, M.: Large-eddy simulation of a developing turbulent boundary layer over a wall-mounted hemisphere under the influence of a surrounding ditch: flow characteristics and aerodynamic forces. J. Wind Eng. Ind. Aerodyn. 227, 105047 (2022)

    Google Scholar 

  • Bentaleb, Y., Lardeau, S., Leschziner, M.A.: Large-eddy simulation of turbulent boundary layer separation from a rounded step. J. Turbul. 13, N4 (2012)

    ADS  Google Scholar 

  • Boudet, J., Giauque, A.: Adaptation and evaluation of a weak recycling strategy for inflow boundary layers in large-eddy simulation. Comput. Fluids 203, 104489 (2020)

    MathSciNet  Google Scholar 

  • Cao, Y., Tamura, T.: Large-eddy simulation study of Reynolds number effects on the flow around a wall-mounted hemisphere in a boundary layer. Phys. Fluids 32(2), 025109 (2020)

    ADS  CAS  Google Scholar 

  • Cavar, D., Meyer, K.E.: LES of turbulent jet in cross-flow: part 1-A numerical validation study. Int. J. Heat Fluid Flow 36, 18–34 (2012)

    Google Scholar 

  • Deck, S., Weiss, P.-É., Pamiès, M., Garnier, E.: Zonal detached eddy simulation of a spatially developing flat plate turbulent boundary layer. Comput. Fluids 48(1), 1–15 (2011)

    Google Scholar 

  • Dhamankar, N.S., Blaisdell, G.A., Lyrintzis, A.S.: Overview of turbulent inflow boundary conditions for large-eddy simulations. AIAA J. 56(4), 1317–1334 (2018)

    ADS  Google Scholar 

  • Fukami, K., Nabae, Y., Kawai, K., Fukagata, K.: Synthetic turbulent inflow generator using machine learning. Phys. Rev. Fluids 4(6), 064603 (2019)

    ADS  Google Scholar 

  • GridPro: Program Development Company LLC, Mesh Generation Software. (2022)

  • Hasan, M., Khan, A.: On the instability characteristics of a reattaching shear layer with nonlaminar separation. Int. J. Heat Fluid Flow 13(3), 224–231 (1992)

    ADS  CAS  Google Scholar 

  • Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62(1), 40–65 (1986)

    ADS  MathSciNet  Google Scholar 

  • Jammalamadaka, A., Li, Z., Jaberi, F.: Numerical investigations of shock wave interactions with a supersonic turbulent boundary layer. Phys. Fluids 26(5), 056101 (2014)

    ADS  Google Scholar 

  • Jewkes, J.W., Chung, Y.M., Carpenter, P.W.: Modifications to a turbulent inflow generation method for boundary-layer flows. AIAA J. 49(1), 247–250 (2011)

    ADS  Google Scholar 

  • Jiménez, J., Hoyas, S., Simens, M.P., Mizuno, Y.: Turbulent boundary layers and channels at moderate reynolds numbers. J. Fluid Mech. 657, 335–360 (2010)

    ADS  Google Scholar 

  • Johnson, P.L., Kapat, J.S.: Large-eddy simulations of a cylindrical film cooling hole. J. Thermophys. Heat Transfer 27(2), 255–273 (2013)

    CAS  Google Scholar 

  • Kim, J., Lee, C.: Deep unsupervised learning of turbulence for inflow generation at various reynolds numbers. J. Comput. Phys. 406, 109216 (2020)

    MathSciNet  Google Scholar 

  • Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)

    ADS  Google Scholar 

  • Kröger, H., Kornev, N.: Generation of divergence free synthetic inflow turbulence with arbitrary anisotropy. Comput. Fluids 165, 78–88 (2018)

    MathSciNet  Google Scholar 

  • Lardeau, S., Leschziner, M.: The interaction of round synthetic jets with a turbulent boundary layer separating from a rounded ramp. J. Fluid Mech. 683, 172–211 (2011)

    ADS  CAS  Google Scholar 

  • Lardeau, S.: LES: 2-D Curved Backward-Facing Step” (2020) [Online]. https://turbmodels.larc.nasa.gov/Other_LES_Data/curvedstep.html

  • Lee, J.H., Sung, H.J.: Direct numerical simulation of a turbulent boundary layer up to Re$þeta$= 2500. Int. J. Heat Fluid Flow 32(1), 1–10 (2011)

    Google Scholar 

  • Li, N., Balaras, E., Piomelli, U.: Inflow conditions for large-eddy simulations of mixing layers. Phys. Fluids 12(4), 935–938 (2000)

    ADS  CAS  Google Scholar 

  • Li, N., Balaras, E., Wallace, J.M.: Passive scalar transport in a turbulent mixing layer. Flow Turbul. Combust. 85, 1–24 (2010)

    Google Scholar 

  • Li, D., Luo, K., Fan, J.: Direct numerical simulation of heat transfer in a spatially developing turbulent boundary layer. Phys. Fluids 28(10), 105104 (2016)

    ADS  Google Scholar 

  • Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids 4(3), 633–635 (1992)

    ADS  MathSciNet  Google Scholar 

  • Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140(2), 233–258 (1998)

    ADS  MathSciNet  Google Scholar 

  • Morgan, B., Larsson, J., Kawai, S., Lele, S.K.: Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation. AIAA J. 49(3), 582–597 (2011)

    ADS  Google Scholar 

  • Muñoz-Esparza, D., Kosović, B., Van Beeck, J., Mirocha, J.: A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: application to neutrally stratified atmospheric boundary layers. Phys. Fluids 27(3), 035102 (2015)

    ADS  Google Scholar 

  • Munters, W., Meneveau, C., Meyers, J.: Shifted periodic boundary conditions for simulations of wall-bounded turbulent flows. Phys. Fluids 28(2), 025112 (2016)

    ADS  Google Scholar 

  • Nozawa, K., Tamura, T.: Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer. J. Wind Eng. Ind. Aerodyn. 90(10), 1151–1162 (2002)

    Google Scholar 

  • Pargal, S., Wu, H., Yuan, J., Moreau, S.: Adverse-pressure-gradient turbulent boundary layer on convex wall. Phys. Fluids 34(3), 035107 (2022)

    ADS  CAS  Google Scholar 

  • Patankar, S.: Numerical heat transfer and fluid flow. Taylor & Francis (2018)

    Google Scholar 

  • Piomelli, U., Chasnov, J.R.: Large-eddy simulations: theory and applications. Springer (1996)

    Google Scholar 

  • Saeedi, M., Wang, B.-C.: Large-eddy simulation of turbulent flow and dispersion over a matrix of wall-mounted cubes. Phys. Fluids 27(11), 115104 (2015)

    ADS  Google Scholar 

  • Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J.H., Johansson, A.V., Alfredsson, P.H., Henningson, D.S.: Turbulent boundary layers up to reθ= 2500 studied through simulation and experiment. Phys. Fluids 21(5), 051702 (2009)

    ADS  Google Scholar 

  • Simens, M.P., Jiménez, J., Hoyas, S., Mizuno, Y.: A high-resolution code for turbulent boundary layers. J. Comput. Phys. 228(11), 4218–4231 (2009)

    ADS  CAS  Google Scholar 

  • Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963)

    ADS  Google Scholar 

  • Spalart, P., Strelets, M., Travin, A.: Direct numerical simulation of large-eddy-break-up devices in a boundary layer. Int. J. Heat Fluid Flow 27(5), 902–910 (2006)

    CAS  Google Scholar 

  • Stolz, S., Adams, N.A.: Large-eddy simulation of high-reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Phys. Fluids 15(8), 2398–2412 (2003)

    ADS  CAS  Google Scholar 

  • Tabor, G.R., Baba-Ahmadi, M.: Inlet conditions for large eddy simulation: a review. Comput. Fluids 39(4), 553–567 (2010)

    MathSciNet  Google Scholar 

  • Tadjfar, M., Asgari, E.: The role of frequency and phase difference between the flow and the actuation signal of a tangential synthetic jet on dynamic stall flow control. J. Fluids Eng. 140(11), 111203 (2018)

    Google Scholar 

  • Tamura, T., Cao, S., Okuno, A.: LES study of turbulent boundary layer over a smooth and a rough 2D hill model. Flow Turbul. Combust. 79, 405–432 (2007)

    Google Scholar 

  • Urbin, G., Knight, D.: Large-eddy simulation of a supersonic boundary layer using an unstructured grid. AIAA J. 39(7), 1288–1295 (2001)

    ADS  Google Scholar 

  • Wu, X.: Inflow turbulence generation methods. Annu. Rev. Fluid Mech. 49, 23–49 (2017)

    ADS  MathSciNet  Google Scholar 

  • Wu, W., Meneveau, C., Mittal, R.: Spatio-temporal dynamics of turbulent separation bubbles. J. Fluid Mech. 883, A45 (2020)

    ADS  MathSciNet  CAS  Google Scholar 

  • Xu, S., Martin, M.P.: Assessment of inflow boundary conditions for compressible turbulent boundary layers. Phys. Fluids 16(7), 2623–2639 (2004)

    ADS  CAS  Google Scholar 

  • Yakeno, A., Abe, Y., Kawai, S., Nonomura, T., Fujii, K.: Spanwise modulation effects of local body force on downstream turbulence growth around two-dimensional hump. Int. J. Heat Fluid Flow 63, 108–118 (2017)

    Google Scholar 

  • Yang, X.I., Meneveau, C.: Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces. J. Turbul. 17(1), 75–93 (2016)

    ADS  MathSciNet  Google Scholar 

  • Yousif, M.Z., Yu, L., Lim, H.: Physics-guided deep learning for generating turbulent inflow conditions. J. Fluid Mech. 936, A21 (2022)

    ADS  MathSciNet  CAS  Google Scholar 

  • Yousif, M.Z., Zhang, M., Yu, L., Vinuesa, R., Lim, H.: A transformer-based synthetic-inflow generator for spatially developing turbulent boundary layers. J. Fluid Mech. 957, A6 (2023)

    ADS  MathSciNet  CAS  Google Scholar 

  • Zhang, S., Zhong, S.: Turbulent flow separation control over a two-dimensional ramp using synthetic jets. AIAA J. 49(12), 2637–2649 (2011)

    ADS  Google Scholar 

  • Zhong, S., Zhang, S.: Further examination of the mechanism of round synthetic jets in delaying turbulent flow separation. Flow Turbul. Combust. 91(1), 177–208 (2013)

    CAS  Google Scholar 

  • Zuo, F.-Y., Memmolo, A., Huang, G., Pirozzoli, S.: Direct numerical simulation of conical shock wave-turbulent boundary layer interaction. J. Fluid Mech. 877, 167–195 (2019)

    ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the computational resources from Digital Resource Alliance CANADA for providing the computational facility. Also, the research funding from the Faculty of Engineering at Dalhousie University to Mohammad Saeedi is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

E.A. and M.S. both conceptualized the topic. E.A. conducted the simulations and prepared the initial manuscripts. M.S. performed the supervisory job, reviewed the work and corrected the manuscript and figures. Resources were provided by M.S. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mohammad Saeedi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari, E., Saeedi, M. The Influence of Spurious Periodicity on the Flow Characteristics of a Separated Turbulent Boundary Layer with and Without Active Flow Control. Flow Turbulence Combust 112, 459–482 (2024). https://doi.org/10.1007/s10494-023-00522-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-023-00522-2

Keywords

Navigation