Skip to main content
Log in

PRKAA2, MTOR, and TFEB in the regulation of lysosomal damage response and autophagy

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Lysosomes function as critical signaling hubs that govern essential enzyme complexes. LGALS proteins (LGALS3, LGALS8, and LGALS9) are integral to the endomembrane damage response. If ESCRT fails to rectify damage, LGALS-mediated ubiquitination occurs, recruiting autophagy receptors (CALCOCO2, TRIM16, and SQSTM1) and VCP/p97 complex containing UBXN6, PLAA, and YOD1, initiating selective autophagy. Lysosome replenishment through biogenesis is regulated by TFEB. LGALS3 interacts with TFRC and TRIM16, aiding ESCRT-mediated repair and autophagy-mediated removal of damaged lysosomes. LGALS8 inhibits MTOR and activates TFEB for ATG and lysosomal gene transcription. LGALS9 inhibits USP9X, activates PRKAA2, MAP3K7, ubiquitination, and autophagy. Conjugation of ATG8 to single membranes (CASM) initiates damage repair mediated by ATP6V1A, ATG16L1, ATG12, ATG5, ATG3, and TECPR1. ATG8ylation or CASM activates the MERIT system (ESCRT-mediated repair, autophagy-mediated clearance, MCOLN1 activation, Ca2+ release, RRAG-GTPase regulation, MTOR modulation, TFEB activation, and activation of GTPase IRGM). Annexins ANAX1 and ANAX2 aid damage repair. Stress granules stabilize damaged membranes, recruiting FLCN-FNIP1/2, G3BP1, and NUFIP1 to inhibit MTOR and activate TFEB. Lysosomes coordinate the synergistic response to endomembrane damage and are vital for innate and adaptive immunity. Future research should unveil the collaborative actions of ATG proteins, LGALSs, TRIMs, autophagy receptors, and lysosomal proteins in lysosomal damage response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data are included in the manuscript.

Abbreviations

ACTR2/ACTR3:

Actin-related protein 2/actin-related protein 3

AGFG1:

ArfGAP with FG repeats 1

ALG2:

ALG2 alpha-1,3/1,6-mannosyltransferase

ARL8B:

ADP ribosylation factor like GTPase 8B

ATG:

Autophagy related

ATG16L1:

Autophagy-related 16 like 1

ATG3:

Autophagy-related 3

ATG7:

Autophagy-related 7

ATXN3:

Ataxin 3

BECN1:

Beclin 1

CASM:

Conjugation of ATG8 to single membranes

CALCOCO2:

Calcium binding and coiled-coil domain 2

C. elegans :

Caenorhabditis elegans

CNN2:

Calponin 2

CRD:

Carbohydrate recognition domain

DEPTOR:

DEP domain containing MTOR interacting protein

DYSF:

Dysferlin

EIF2A:

Eukaryotic translation initiation factor 2A

EIF4A3:

Eukaryotic translation initiation factor 4A3

EIF2AK2:

Eukaryotic translation initiation factor 2 alpha kinase 2

ERES:

Endoplasmic reticulum exit sites

ESCRT:

Endosomal sorting complex required for transport

FBD:

FIP200-binding domain

FLCN:

Folliculin

FNIP1:

Folliculin interacting protein 1

HSPB1:

Heat shock protein family B (small) member 1

GAP:

GTPase-activating protein

GBP1:

Guanylate binding protein 1

G3BP1:

G3BP stress granule assembly factor 1

GSK3B:

Glycogen synthase kinase 3 beta

IAV:

Influenza A virus

IRGM:

Immunity-related GTPase M

ISR:

Integrated stress response

KD:

Knockdown

KO:

Knockout

LAMP1:

Lysosomal-associated membrane protein 1

LAMP2:

Lysosomal-associated membrane protein 2

LGALS:

Galectin

LGALS3:

Galectin 3

LGALS8:

Galectin 8

LGALS9:

Galectin 9

LAP:

LC3-associated phagocytosis

LIR:

LC3-interacting region

LLOMe:

L-leucyl-l-leucine, methyl ester, monohydrochloride

LMP:

Lysosomal membrane permeabilization

LRRK2:

Leucine-rich repeat kinase 2

MAP1LC3B:

Microtubule-associated protein 1 light chain 3 beta

MAP3K7:

Mitogen-activated protein kinase kinase kinase 7

MEFs:

Mouse embryonic fibroblasts

MCOLN1:

Mucolipin TRP cation channel 1

MTOR/mTOR:

Mechanistic target of rapamycin kinase

M. tb :

Mycobacterium tuberculosis

NUFIP2:

Nuclear FMR1 interacting protein 2

ORF3a:

Open reading frame 3a

OSBP:

Oxysterol-binding protein

ORP:

Oxysterol-binding protein (OSBP)-related protein

PRKN:

Parkin

PD:

Parkinson’s disease

PDCD6IP:

Programmed cell death 6 interacting protein

PI4K2A:

Phosphatidylinositol 4-kinase type 2 alpha

PI3K:

Phosphatidylinositol-3-kinase

PICALM:

Phosphatidylinositol-binding clathrin assembly protein

PITT:

Phosphoinositide-initiated membrane tethering and lipid transport

PLAA:

Phospholipase A2 activating protein

PPP3CB:

Protein phosphatase 3 catalytic subunit beta

PRKAA2/AMPK:

Protein kinase AMP-activated catalytic subunit alpha 2/AMP-activated protein kinase

PRKAG1:

Protein kinase AMP-activated non-catalytic subunit gamma 1

PRKDC:

Protein kinase, DNA-activated, catalytic subunit

PTP4A2:

Protein tyrosine phosphatase 4A2

PE:

Phosphatidyl ethanol amine

PS:

Phosphatidyl serine

R239:

Arginine 239

R65:

Arginine 65

RAB8A:

RAB8A, member RAS oncogene family

RAPTOR:

Regulatory-associated protein of MTOR complex 1

RB1CC1:

RB1 inducible coiled-coil 1

RRAG:

Ras-related GTP binding

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

SEC31A:

SEC31 homolog A, COPII coat complex component

COPII:

coat complex component

SKP1-CUL1-FBXO27:

S-phase kinase associated protein 1-cullin 1-F-box protein 27

SLC38A9:

Solute carrier family 38 member 9

SM:

Sphingomyelin

SQSTM1/p62:

Sequestosome 1

STING1:

Stimulator of interferon response cGAMP interactor 1

SGs:

Stress granules

TFEB:

Transcription factor EB

TECPR1:

Tectonin beta-propeller repeat containing 1

TFRC:

Transferrin receptor

TFE3:

Transcription factor E3

TRIM16:

Tripartite motif containing 16

TSG101:

Tumor susceptibility 101

OSBPL11:

Cholesterol-binding protein oxysterol-binding protein 11

Ub:

Ubiquitin

UBE2QL1:

Ubiquitin-conjugating enzyme E2 Q family like 1

UBXN6:

UBX domain protein 6

ULK1:

Unc-51-like autophagy-activating kinase 1

USP9X:

Ubiquitin-specific peptidase 9 X-linked

VAPA/B:

VAMP-associated protein A/B

VCP:

Valosin containing protein

VPS4B:

Vacuolar protein sorting 4 homolog B

WIPI2:

WD repeat domain, phosphoinositide interacting 2

WT:

Wild type

YOD1:

YOD1 deubiquitinase

References

  1. Chauhan S et al (2016) TRIMs and galectins globally cooperate and TRIM16 and galectin-3 Co-direct autophagy in endomembrane damage homeostasis. Dev Cell 39(1):13–27

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jia J et al (2018) Galectins control mTOR in response to endomembrane damage. Mol Cell 70(1):120–135 e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Radulovic M et al (2018) ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival. EMBO J 37(21):e99753

    Article  PubMed  PubMed Central  Google Scholar 

  4. Repnik U et al (2017) L-leucyl-L-leucine methyl ester does not release cysteine cathepsins to the cytosol but inactivates them in transiently permeabilized lysosomes. J Cell Sci 130(18):3124–3140

    CAS  Google Scholar 

  5. Sachdeva K, Sundaramurthy V (2020) The interplay of host lysosomes and intracellular pathogens. Front Cell Infect Microbiol 10:595502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Papadopoulos C, Meyer H (2017) Detection and clearance of damaged lysosomes by the endo-lysosomal damage response and lysophagy. Curr Biol 27(24):R1330–R1341

    Article  CAS  PubMed  Google Scholar 

  7. Maejima I et al (2013) Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J 32(17):2336–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Skowyra ML et al (2018) Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science 360(6384):eaar5078

    Article  PubMed  PubMed Central  Google Scholar 

  9. Raben N et al (2007) Deconstructing Pompe disease by analyzing single muscle fibers: to see a world in a grain of sand. Autophagy 3(6):546–552

    Article  CAS  PubMed  Google Scholar 

  10. Hung YH et al (2013) Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat Commun 4:2111

    Article  ADS  PubMed  Google Scholar 

  11. Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176(1–2):11–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yim WW, Mizushima N (2020) Lysosome biology in autophagy Cell Discov 6:6

    Article  CAS  PubMed  Google Scholar 

  13. Yu L et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465(7300):942–946

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sardiello M et al (2009) A gene network regulating lysosomal biogenesis and function. Science 325(5939):473–477

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Settembre C et al (2013) TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 15(6):647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hardie DG (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25(18):1895–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19(2):121–135

    Article  CAS  PubMed  Google Scholar 

  18. Lin SC, Hardie DG (2018) AMPK: sensing glucose as well as cellular energy status. Cell Metab 27(2):299–313

    Article  CAS  PubMed  Google Scholar 

  19. Li M et al (2019) Transient receptor potential V channels are essential for glucose sensing by aldolase and AMPK. Cell Metab 30(3):508–524 e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang CS et al (2017) Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548(7665):112–116

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Malik N et al (2023) Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science 380(6642):eabj5559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Woods A et al (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13(22):2004–2008

    Article  CAS  PubMed  Google Scholar 

  23. Hawley SA et al (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2(1):9–19

    Article  CAS  PubMed  Google Scholar 

  24. Momcilovic M, Hong SP, Carlson M (2006) Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 281(35):25336–25343

    Article  CAS  PubMed  Google Scholar 

  25. Hardie DG (2014) AMPK–sensing energy while talking to other signaling pathways. Cell Metab 20(6):939–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168(6):960–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66(6):789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He L, Wondisford FE (2015) Metformin action: concentrations matter. Cell Metab 21(2):159–162

    Article  CAS  PubMed  Google Scholar 

  29. Zhou G et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pineda CT et al (2015) Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160(4):715–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gaber T, Strehl C, Buttgereit F (2017) Metabolic regulation of inflammation. Nat Rev Rheumatol 13(5):267–279

    Article  PubMed  Google Scholar 

  32. O’Neill LA, Kishton RJ, Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16(9):553–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akkaya M (2021) The metabolic clock model of B cell activation and differentiation. Immunometabolism 3(3):e210019

    Article  PubMed  PubMed Central  Google Scholar 

  34. Egan DF et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–461

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Herrero-Martin G et al (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28(6):677–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim J et al (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ganley IG et al (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284(18):12297–12305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hosokawa N et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20(7):1981–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jung CH et al (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20(7):1992–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Madeo F et al (2019) Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab 29(3):592–610

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, Sowers JR, Ren J (2018) Targeting autophagy in obesity: from pathophysiology to management. Nat Rev Endocrinol 14(6):356–376

    Article  CAS  PubMed  Google Scholar 

  42. Rivera JF et al (2014) Autophagy defends pancreatic beta cells from human islet amyloid polypeptide-induced toxicity. J Clin Invest 124(8):3489–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kimmelman AC, White E (2017) autophagy and tumor metabolism. Cell Metab 25(5):1037–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13(10):722–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mizushima N et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rubinsztein DC, Bento CF, Deretic V (2015) Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J Exp Med 212(7):979–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kopitz J et al (1990) Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol 111(3):941–953

    Article  CAS  PubMed  Google Scholar 

  48. Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330(6009):1344–1348

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19(6):349–364

    Article  CAS  PubMed  Google Scholar 

  50. Randow F, Youle RJ (2014) Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 15(4):403–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rogov V et al (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53(2):167–178

    Article  CAS  PubMed  Google Scholar 

  52. Abu-Remaileh M et al (2017) Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358(6364):807–813

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Seglen PO, Gordon PB, Holen I (1990) Non-selective autophagy. Semin Cell Biol 1(6):441–448

    CAS  PubMed  Google Scholar 

  54. An H, Harper JW (2018) Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy. Nat Cell Biol 20(2):135–143

    Article  CAS  PubMed  Google Scholar 

  55. Wyant GA et al (2018) NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 360(6390):751–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dupont N et al (2014) Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol 24(6):609–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rambold AS, Cohen S, Lippincott-Schwartz J (2015) Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell 32(6):678–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Seo AY et al (2017) AMPK and vacuole-associated Atg14p orchestrate mu-lipophagy for energy production and long-term survival under glucose starvation. Elife 6:e21690

    Article  PubMed  PubMed Central  Google Scholar 

  59. Singh R et al (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zirin J, Nieuwenhuis J, Perrimon N (2013) Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol 11(11):e1001708

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jia J et al (2020) AMPK, a regulator of metabolism and autophagy, is activated by lysosomal damage via a novel galectin-directed ubiquitin signal transduction system. Mol Cell 77(5):951–969 e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jia J et al (2020) AMPK is activated during lysosomal damage via a galectin-ubiquitin signal transduction system. Autophagy 16(8):1550–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Johannes L, Jacob R, Leffler H (2018) Galectins at a glance. J Cell Sci 131(9):jcs208884

    Article  PubMed  Google Scholar 

  64. Hoyer MJ, Swarup S, Harper JW (2022) Mechanisms controlling selective elimination of damaged lysosomes. Curr Opin Physiol 29:100590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sudhakar JN et al (2020) Lumenal Galectin-9-Lamp2 interaction regulates lysosome and autophagy to prevent pathogenesis in the intestine and pancreas. Nat Commun 11(1):4286

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Di Lella S et al (2011) When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 50(37):7842–7857

    Article  PubMed  Google Scholar 

  67. Kirkin V et al (2009) A role for ubiquitin in selective autophagy. Mol Cell 34(3):259–269

    Article  CAS  PubMed  Google Scholar 

  68. Chen RH, Chen YH, Huang TY (2019) Ubiquitin-mediated regulation of autophagy. J Biomed Sci 26(1):80

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  69. Papadopoulos C et al (2017) VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J 36(2):135–150

    Article  CAS  PubMed  Google Scholar 

  70. Shahnazari S et al (2010) A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy. Cell Host Microbe 8(2):137–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Thurston TL et al (2012) Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482(7385):414–418

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Eapen VV et al (2021) Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy. Elife 10:e72328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Reggiori F et al (2021) Glycans in autophagy, endocytosis and lysosomal functions. Glycoconj J 38(5):625–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Burbidge K et al (2022) LGALS3 (galectin 3) mediates an unconventional secretion of SNCA/alpha-synuclein in response to lysosomal membrane damage by the autophagic-lysosomal pathway in human midbrain dopamine neurons. Autophagy 18(5):1020–1048

    Article  CAS  PubMed  Google Scholar 

  75. Jia J et al (2019) Galectins control MTOR and AMPK in response to lysosomal damage to induce autophagy. Autophagy 15(1):169–171

    Article  CAS  PubMed  Google Scholar 

  76. Yoshida Y et al (2017) Ubiquitination of exposed glycoproteins by SCF(FBXO27) directs damaged lysosomes for autophagy. Proc Natl Acad Sci U S A 114(32):8574–8579

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hong MH et al (2021) Intracellular galectins sense cytosolically exposed glycans as danger and mediate cellular responses. J Biomed Sci 28(1):16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125(1):25–32

    Article  PubMed  PubMed Central  Google Scholar 

  79. Alers S et al (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32(1):2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rabanal-Ruiz Y, Korolchuk VI (2018) mTORC1 and nutrient homeostasis: the central role of the lysosome. Int J Mol Sci 19(3):818

    Article  PubMed  PubMed Central  Google Scholar 

  81. Carosi JM et al (2022) The mTOR-lysosome axis at the centre of ageing. FEBS Open Bio 12(4):739–757

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Z et al (2021) Role of lysosomes in physiological activities, diseases, and therapy. J Hematol Oncol 14(1):79

    Article  PubMed  PubMed Central  Google Scholar 

  83. Napolitano G, Ballabio A (2016) TFEB at a glance. J Cell Sci 129(13):2475–2481

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gwinn DM et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shaw RJ et al (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6(1):91–99

    Article  CAS  PubMed  Google Scholar 

  86. Betz C, Hall MN (2013) Where is mTOR and what is it doing there? J Cell Biol 203(4):563–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Castellano BM et al (2017) Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science 355(6331):1306–1311

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Demetriades C, Doumpas N, Teleman AA (2014) Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156(4):786–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sancak Y et al (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bar-Peled L et al (2012) Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150(6):1196–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sancak Y et al (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141(2):290–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zoncu R et al (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334(6056):678–683

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jung J, Genau HM, Behrends C (2015) Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol Cell Biol 35(14):2479–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang S et al (2015) Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347(6218):188–194

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Al-Bari MAA, Xu P (2020) Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways. Ann N Y Acad Sci 1467(1):3–20

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Shin HR, Zoncu R (2018) Finding sugar in the pantry: how galectins detect and signal lysosomal damage. Mol Cell 70(1):5–7

    Article  CAS  PubMed  Google Scholar 

  97. Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368(7):651–662

    Article  CAS  PubMed  Google Scholar 

  98. Zaffagnini G, Martens S (2016) Mechanisms of selective autophagy. J Mol Biol 428(9 Pt A):1714–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Napolitano G et al (2018) mTOR-dependent phosphorylation controls TFEB nuclear export. Nat Commun 9(1):3312

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  100. Shen K, Sabatini DM (2018) Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc Natl Acad Sci USA 115(38):9545–9550

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ali ES et al (2022) Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell Int 22(1):284

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  102. Maiese K (2016) Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 82(5):1245–1266

    Article  CAS  PubMed  Google Scholar 

  103. Thellung S et al (2019) Autophagy activator drugs: a new opportunity in neuroprotection from misfolded protein toxicity. Int J Mol Sci 20(4):901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chung CY et al (2019) Covalent targeting of the vacuolar H(+)-ATPase activates autophagy via mTORC1 inhibition. Nat Chem Biol 15(8):776–785

    Article  CAS  PubMed  Google Scholar 

  105. Futai M et al (2019) Vacuolar-type ATPase: a proton pump to lysosomal trafficking. Proc Jpn Acad Ser B Phys Biol Sci 95(6):261–277

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Di Malta C, Cinque L, Settembre C (2019) Transcriptional regulation of autophagy: mechanisms and diseases. Front Cell Dev Biol 7:114

    Article  PubMed  PubMed Central  Google Scholar 

  107. Aits S et al (2015) Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay. Autophagy 11(8):1408–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kumar S et al (2017) Galectins and TRIMs directly interact and orchestrate autophagic response to endomembrane damage. Autophagy 13(6):1086–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Park JM et al (2018) ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction. Autophagy 14(4):584–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kimura T et al (2017) Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy. EMBO J 36(1):42–60

    Article  CAS  PubMed  Google Scholar 

  111. Zhitomirsky B et al (2018) Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity. Cell Death Dis 9(12):1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Napolitano G, Di Malta C, Ballabio A (2022) Non-canonical mTORC1 signaling at the lysosome. Trends Cell Biol 32(11):920–931

    Article  CAS  PubMed  Google Scholar 

  113. Settembre C et al (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31(5):1095–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Catena V, Fanciulli M (2017) Deptor: not only a mTOR inhibitor. J Exp Clin Cancer Res 36(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  115. Okumura F et al (2016) The role of cullin 5-containing ubiquitin ligases. Cell Div 11:1

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mandell MA, Saha B, Thompson TA (2020) The tripartite nexus: autophagy, cancer, and tripartite motif-containing protein family members. Front Pharmacol 11:308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sanchez-Garrido J, Shenoy AR (2021) Regulation and repurposing of nutrient sensing and autophagy in innate immunity. Autophagy 17(7):1571–1591

    Article  CAS  PubMed  Google Scholar 

  118. Takahara T et al (2020) Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes. J Biomed Sci 27(1):87

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  119. Daussy CF, Wodrich H (2020) Repair me if you can: membrane damage, response, and control from the viral perspective. Cells 9(9):2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jimenez AJ et al (2014) ESCRT machinery is required for plasma membrane repair. Science 343(6174):1247136

    Article  PubMed  Google Scholar 

  121. Wei Y et al (2017) Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168(1–2):224–238 e10

    Article  CAS  PubMed  Google Scholar 

  122. Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16(6):495–501

    Article  CAS  PubMed  Google Scholar 

  123. Li W et al (2021) Selective autophagy of intracellular organelles: recent research advances. Theranostics 11(1):222–256

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wrobel M et al (2022) ESCRT-I fuels lysosomal degradation to restrict TFEB/TFE3 signaling via the Rag-mTORC1 pathway. Life Sci Alliance 5(7):e202101239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Paquette M et al (2021) AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3. Autophagy 17(12):3957–3975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jia J et al (2020) Galectin-3 coordinates a cellular system for lysosomal repair and removal. Dev Cell 52(1):69–87 e8

    Article  CAS  PubMed  Google Scholar 

  127. Jia J et al (2020) MERIT, a cellular system coordinating lysosomal repair, removal and replacement. Autophagy 16(8):1539–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sheff D et al (2002) Transferrin receptor recycling in the absence of perinuclear recycling endosomes. J Cell Biol 156(5):797–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Garcia-Revilla J et al (2022) Galectin-3, a rising star in modulating microglia activation under conditions of neurodegeneration. Cell Death Dis 13(7):628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rocha EM et al (2022) LRRK2 and idiopathic Parkinson’s disease. Trends Neurosci 45(3):224–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rivero-Rios P et al (2019) The G2019S variant of leucine-rich repeat kinase 2 (LRRK2) alters endolysosomal trafficking by impairing the function of the GTPase RAB8A. J Biol Chem 294(13):4738–4758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Usmani A, Shavarebi F, Hiniker A (2021) The cell biology of LRRK2 in Parkinson’s disease. Mol Cell Biol 41(5):e00660-20

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kuwahara T, Iwatsubo T (2020) The emerging functions of LRRK2 and Rab GTPases in the endolysosomal system. Front Neurosci 14:227

    Article  PubMed  PubMed Central  Google Scholar 

  134. Radulovic M, Stenmark H (2020) LRRK2 to the rescue of damaged endomembranes. EMBO J 39(18):e106162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Herbst S et al (2020) LRRK2 activation controls the repair of damaged endomembranes in macrophages. EMBO J 39(18):e104494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bonet-Ponce L, Cookson MR (2022) LRRK2 recruitment, activity, and function in organelles. FEBS J 289(22):6871–6890

    Article  CAS  PubMed  Google Scholar 

  137. Nozawa T et al (2023) Rab41-mediated ESCRT machinery repairs membrane rupture by a bacterial toxin in xenophagy. Nat Commun 14(1):6230

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xu E et al (2022) Pathological alpha-synuclein recruits LRRK2 expressing pro-inflammatory monocytes to the brain. Mol Neurodegener 17(1):7

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shukla S et al (2022) In vitro reconstitution of calcium-dependent recruitment of the human ESCRT machinery in lysosomal membrane repair. Proc Natl Acad Sci USA 119(35):e2205590119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Abdollahzadeh I et al (2017) The Atg8 family of proteins-modulating shape and functionality of autophagic membranes. Front Genet 8:109

    Article  PubMed  PubMed Central  Google Scholar 

  141. Papadopoulos C, Kravic B, Meyer H (2020) repair or lysophagy: dealing with damaged lysosomes. J Mol Biol 432(1):231–239

    Article  CAS  PubMed  Google Scholar 

  142. Kabeya Y et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kirkin V (2020) History of the selective autophagy research: how did it begin and where does it stand today? J Mol Biol 432(1):3–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Settembre C et al (2011) TFEB links autophagy to lysosomal biogenesis. Science 332(6036):1429–1433

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Roczniak-Ferguson A et al (2012) The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 5(228):ra42

    Article  PubMed  PubMed Central  Google Scholar 

  146. Martina JA et al (2012) MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8(6):903–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Martina JA, Puertollano R (2013) Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J Cell Biol 200(4):475–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang F, Gomez-Sintes R, Boya P (2018) Lysosomal membrane permeabilization and cell death. Traffic 19(12):918–931

    Article  CAS  PubMed  Google Scholar 

  149. Nakamura S et al (2020) LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. Nat Cell Biol 22(10):1252–1263

    Article  CAS  PubMed  Google Scholar 

  150. Wang S et al (2019) Impaired TFEB-mediated lysosomal biogenesis promotes the development of pancreatitis in mice and is associated with human pancreatitis. Autophagy 15(11):1954–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Franco-Juarez B et al (2022) TFEB; Beyond its role as an autophagy and lysosomes regulator. Cells 11(19):3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li L et al (2018) A TFEB nuclear export signal integrates amino acid supply and glucose availability. Nat Commun 9(1):2685

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  153. Nakamura S, Akayama S, Yoshimori T (2021) Autophagy-independent function of lipidated LC3 essential for TFEB activation during the lysosomal damage responses. Autophagy 17(2):581–583

    Article  CAS  PubMed  Google Scholar 

  154. Fujita N et al (2008) The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19(5):2092–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Otomo C et al (2013) Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol 20(1):59–66

    Article  CAS  PubMed  Google Scholar 

  156. Mizushima N (2020) The ATG conjugation systems in autophagy. Curr Opin Cell Biol 63:1–10

    Article  CAS  PubMed  Google Scholar 

  157. Medina DL et al (2015) Lysosomal calcium signalling regulates autophagy through calcineurin and ​TFEB. Nat Cell Biol 17(3):288–299

    Article  PubMed  PubMed Central  Google Scholar 

  158. Chen XC et al (2021) Lysosome depletion-triggered autophagy impairment in progressive kidney injury. Kidney Dis (Basel) 7(4):254–267

    Article  PubMed  Google Scholar 

  159. Cui Z et al (2023) Structure of the lysosomal mTORC1-TFEB-Rag-ragulator megacomplex. Nature 614(7948):572–579

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang L et al (2022) Torin 1 alleviates impairment of TFEB-mediated lysosomal biogenesis and autophagy in TGFBI (p.G623_H626del)-linked Thiel-Behnke corneal dystrophy. Autophagy 18(4):765–782

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  161. Shen D et al (2012) Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun 3:731

    Article  ADS  PubMed  Google Scholar 

  162. Plesch E et al (2018) Selective agonist of TRPML2 reveals direct role in chemokine release from innate immune cells. Elife 7:e39720

    Article  PubMed  PubMed Central  Google Scholar 

  163. Zhang X et al (2016) MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun 7:12109

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  164. Martina JA, Puertollano R (2017) TFEB and TFE3: The art of multi-tasking under stress conditions. Transcription 8(1):48–54

    Article  CAS  PubMed  Google Scholar 

  165. Pastore N et al (2016) TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 12(8):1240–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Goodwin JM et al (2021) GABARAP sequesters the FLCN-FNIP tumor suppressor complex to couple autophagy with lysosomal biogenesis. Sci Adv 7(40):eabj2485

    Article  ADS  CAS  PubMed  Google Scholar 

  167. Nguyen TN et al (2016) Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J Cell Biol 215(6):857–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kumar S et al (2020) Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens. Nat Cell Biol 22(8):973–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Buijze H et al (2023) Human GBP1 is involved in the repair of damaged Phagosomes/Endolysosomes. Int J Mol Sci 24(11):9701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Iriondo MN et al (2023) Effect of ATG12-ATG5-ATG16L1 autophagy E3-like complex on the ability of LC3/GABARAP proteins to induce vesicle tethering and fusion. Cell Mol Life Sci 80(2):56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lystad AH, Simonsen A (2019) Mechanisms and pathophysiological roles of the ATG8 conjugation machinery. Cells 8(9):973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Durgan J et al (2021) Non-canonical autophagy drives alternative ATG8 conjugation to phosphatidylserine. Mol Cell 81(9):2031–2040 e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cross J et al (2023) Lysosome damage triggers direct ATG8 conjugation and ATG2 engagement via non-canonical autophagy. J Cell Biol 222(12):e202303078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Florey O (2023) TECPR1 helps bridge the CASM during lysosome damage. EMBO J 42(19):e115210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kumar S, Jia J, Deretic V (2021) Atg8ylation as a general membrane stress and remodeling response. Cell Stress 5(9):128–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Durgan J, Florey O (2021) A new flavor of cellular Atg8-family protein lipidation - alternative conjugation to phosphatidylserine during CASM. Autophagy 17(9):2642–2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hooper KM et al (2022) V-ATPase is a universal regulator of LC3-associated phagocytosis and non-canonical autophagy. J Cell Biol 221(6):e202105112

    Article  PubMed  PubMed Central  Google Scholar 

  178. Timimi L et al (2022) The V-ATPase complex regulates non-canonical Atg8-family protein lipidation through ATG16L1 recruitment. Autophagy 18(3):707–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Durgan J, Florey O (2022) Many roads lead to CASM: diverse stimuli of noncanonical autophagy share a unifying molecular mechanism. Sci Adv 8(43):eabo1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Fletcher K et al (2018) The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J 37(4):e97840

    Article  PubMed  PubMed Central  Google Scholar 

  181. Boyle KB et al (2023) TECPR1 conjugates LC3 to damaged endomembranes upon detection of sphingomyelin exposure. EMBO J 42(17):e113012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kaur N et al (2023) TECPR1 is activated by damage-induced sphingomyelin exposure to mediate noncanonical autophagy. EMBO J 42(17):e113105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Corkery DP et al (2023) An ATG12-ATG5-TECPR1 E3-like complex regulates unconventional LC3 lipidation at damaged lysosomes. EMBO Rep 24(9):e56841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kaur N, Carlsson SR, Lystad AH (2024) The separate axes of TECPR1 and ATG16L1 in CASM. Autophagy 20(1):214–215

    Article  CAS  PubMed  Google Scholar 

  185. Radulovic M et al (2022) Cholesterol transfer via endoplasmic reticulum contacts mediates lysosome damage repair. EMBO J 41(24):e112677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tan JX, Finkel T (2022) A phosphoinositide signalling pathway mediates rapid lysosomal repair. Nature 609(7928):815–821

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  187. Niekamp P et al (2022) Ca(2+)-activated sphingomyelin scrambling and turnover mediate ESCRT-independent lysosomal repair. Nat Commun 13(1):1875

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  188. Yim WW, Yamamoto H, Mizushima N (2022) Annexins A1 and A2 are recruited to larger lysosomal injuries independently of ESCRTs to promote repair. FEBS Lett 596(8):991–1003

    Article  CAS  PubMed  Google Scholar 

  189. Jia J et al (2022) Stress granules and mTOR are regulated by membrane atg8ylation during lysosomal damage. J Cell Biol 221(11):e202207091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bussi C et al (2023) Stress granules plug and stabilize damaged endolysosomal membranes. Nature 623(7989):1062–1069

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  191. Poillet-Perez L, White E (2019) Role of tumor and host autophagy in cancer metabolism. Genes Dev 33(11–12):610–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Vanzo R et al (2020) Autophagy role(s) in response to oncogenes and DNA replication stress. Cell Death Differ 27(3):1134–1153

    Article  CAS  PubMed  Google Scholar 

  193. Debnath J, Gammoh N, Ryan KM (2023) Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol 24:560–575

    Article  CAS  PubMed  Google Scholar 

  194. Li X, He S, Ma B (2020) Autophagy and autophagy-related proteins in cancer. Mol Cancer 19(1):12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Li Y et al (2016) Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat Cell Biol 18(10):1065–1077

    Article  CAS  PubMed  Google Scholar 

  196. Palmieri M et al (2017) mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun 8:14338

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sakellariou D et al (2021) eIF4A3 regulates the TFEB-mediated transcriptional response via GSK3B to control autophagy. Cell Death Differ 28(12):3344–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Antonucci L et al (2015) Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A 112(45):E6166–E6174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Guo H et al (2021) Nuclear miR-30b-5p suppresses TFEB-mediated lysosomal biogenesis and autophagy. Cell Death Differ 28(1):320–336

    Article  CAS  PubMed  Google Scholar 

  200. Seczynska M, Dikic I (2017) Removing the waste bags: how p97 drives autophagy of lysosomes. EMBO J 36(2):129–131

    Article  CAS  PubMed  Google Scholar 

  201. Hill SM et al (2021) VCP/p97 regulates Beclin-1-dependent autophagy initiation. Nat Chem Biol 17(4):448–455

    Article  CAS  PubMed  Google Scholar 

  202. Kravic B et al (2022) Ubiquitin profiling of lysophagy identifies actin stabilizer CNN2 as a target of VCP/p97 and uncovers a link to HSPB1. Mol Cell 82(14):2633–2649 e7

    Article  CAS  PubMed  Google Scholar 

  203. Koerver L et al (2019) The ubiquitin-conjugating enzyme UBE2QL1 coordinates lysophagy in response to endolysosomal damage. EMBO Rep 20(10):e48014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kravic B, Behrends C, Meyer H (2020) Regulation of lysosome integrity and lysophagy by the ubiquitin-conjugating enzyme UBE2QL1. Autophagy 16(1):179–180

    Article  CAS  PubMed  Google Scholar 

  205. Wei M, Korotkov KV, Blackburn JS (2018) Targeting phosphatases of regenerating liver (PRLs) in cancer. Pharmacol Ther 190:128–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Motiwala T, Jacob ST (2006) Role of protein tyrosine phosphatases in cancer. Prog Nucleic Acid Res Mol Biol 81:297–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Bai Y et al (2022) PTP4A2 promotes lysophagy by dephosphorylation of VCP/p97 at Tyr805. Autophagy 19(5):1562–1581

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  208. Cabral-Fernandes L et al (2022) Invading bacterial pathogens activate transcription factor EB in epithelial cells through the amino acid starvation pathway of mTORC1 inhibition. Mol Cell Biol 42(9):e0024122

    Article  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and MFK conceptualized the project. M.S reviewed the literature. M.S. and MFK wrote the manuscript. M. S designed and created schematic representations. M.S., MFK, RR, NA, and P.K edited the manuscript.

Corresponding authors

Correspondence to Mohd Shariq or Mohammad Firoz Khan.

Ethics declarations

Ethics approval

The manuscript does not contain clinical studies or patient data.

Consent for publication

All authors have read and approved the final version of the manuscript and its publication in Journal of Molecular Medicine.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shariq, M., Khan, M.F., Raj, R. et al. PRKAA2, MTOR, and TFEB in the regulation of lysosomal damage response and autophagy. J Mol Med 102, 287–311 (2024). https://doi.org/10.1007/s00109-023-02411-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02411-7

Keywords

Navigation