Skip to main content

Advertisement

Log in

GLUT-1DS resistant to ketogenic diet: from clinical feature to in silico analysis. An exemplificative case report with a literature review

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Glucose transporter type 1 deficiency syndrome (GLUT-1DS) is characterized by alterations in glucose translocation through the blood–brain barrier (BBB) due to mutation involving the GLUT-1 transporter. The fundamental therapy is ketogenic diet (KD) that provide an alternative energetic substrate — ketone bodies that across the BBB via MCT-1 — for the brain. Symptoms are various and include intractable seizure, acquired microcephalia, abnormal ocular movement, movement disorder, and neurodevelopment delay secondary to an energetic crisis for persistent neuroglycopenia. KD is extremely effective in controlling epileptic seizures and has a positive impact on movement disorders and cognitive impairment. Cases of KD resistance are rare, and only a few of them are reported in the literature, all regarding seizure. Our study describes a peculiar case of GLUT-1DS due to a new deletion involving the first codon of SLC2A1 gene determining a loss of function with a resistance to KD admitted to hospital due to intractable episodes of dystonia. This patient presented a worsening of symptomatology at higher ketonemia values but without hyperketosis and showed a complete resolution of symptomatology while maintaining low ketonemia values. Our study proposes an in-silico genomic and proteomic analysis aimed at explaining the atypical response to KD exhibited by our patient. In this way, we propose a new clinical and research approach based on precision medicine and molecular modelling to be applied to patients with GLUT-1DS resistant to first-line treatment with ketogenic diet by in silico study of genetic and altered protein product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the published article.

References

  1. De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI (1991) Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 325:703–709. https://doi.org/10.1056/NEJM199109053251006

    Article  PubMed  Google Scholar 

  2. Klepper J, Akman C, Armeno M, Auvin S, Cervenka M, Cross HJ et al (2020) Glut1 Deficiency Syndrome (Glut1DS): State of the art in 2020 and recommendations of the international Glut1DS study group. Epilepsia Open 5:354–365. https://doi.org/10.1002/epi4.12414

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang D, Pascual JM, De Vivo D (2018) Glucose Transporter Type 1 Deficiency Syndrome. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A (eds) GeneReviews® [Internet]. Seattle (WA), University of Washington, Seattle, pp 1993–2024

  4. Cano A, Ticus I, Chabrol B (2008) Glucose transporter type 1 (GLUT-1) deficiency. Rev Neurol (Paris) 164:896–901. https://doi.org/10.1016/j.neurol.2008.02.033

    Article  CAS  PubMed  Google Scholar 

  5. Brockmann K (2009) The expanding phenotype of GLUT1-deficiency syndrome. Brain Dev 31:545–552. https://doi.org/10.1016/j.braindev.2009.02.008

    Article  PubMed  Google Scholar 

  6. Varesio C, Pasca L, Parravicini S, Zanaboni MP, Ballante E, Masnada S et al (2019) Quality of life in chronic ketogenic diet treatment: the GLUT1DS population perspective. Nutrients 11:1650. https://doi.org/10.3390/nu11071650

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bekker YAC, Lambrechts DA, Verhoeven JS, van Boxtel J, Troost C, Kamsteeg E-J et al (2019) Failure of ketogenic diet therapy in GLUT1 deficiency syndrome. Eur J Paediatr Neurol 23:404–409. https://doi.org/10.1016/j.ejpn.2019.02.012

    Article  PubMed  Google Scholar 

  8. Comella CL, Leurgans S, Wuu J, Stebbins GT, Chmura T, The Dystonia Study Group (2003) Rating scales for dystonia: a multicenter assessment. Mov Disord 18:303–12. https://doi.org/10.1002/mds.10377

    Article  PubMed  Google Scholar 

  9. Sun S (1993) Reduced representation model of protein structure prediction: statistical potential and genetic algorithms. Protein Sci 2:762–785. https://doi.org/10.1002/pro.5560020508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Melo F, Sánchez R, Sali A (2002) Statistical potentials for fold assessment. Protein Sci 11:430–448. https://doi.org/10.1002/pro.110430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deng D, Xu C, Sun P, Wu J, Yan C, Hu M et al (2014) Crystal structure of the human glucose transporter GLUT1. Nature 510:121–125. https://doi.org/10.1038/nature13306

    Article  CAS  PubMed  Google Scholar 

  12. Klepper J, Leiendecker B (2007) GLUT1 deficiency syndrome—2007 update. Dev Med Child Neurol 49:707–716. https://doi.org/10.1111/j.1469-8749.2007.00707.x

    Article  PubMed  Google Scholar 

  13. Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR et al (1985) Sequence and structure of a human glucose transporter. Science 229:941–945. https://doi.org/10.1126/science.3839598

    Article  CAS  PubMed  Google Scholar 

  14. Larsen J, Johannesen KM, Ek J, Tang S, Marini C, Blichfeldt S et al (2015) The role of SLC2A1 mutations in myoclonic astatic epilepsy and absence epilepsy, and the estimated frequency of GLUT1 deficiency syndrome. Epilepsia 56:e203-208. https://doi.org/10.1111/epi.13222

    Article  CAS  PubMed  Google Scholar 

  15. Felmlee MA, Jones RS, Rodriguez-Cruz V, Follman KE, Morris ME (2020) Monocarboxylate transporters (SLC16): function, regulation, and role in health and disease. Pharmacol Rev 72:466–485. https://doi.org/10.1124/pr.119.018762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cappuccio G, Pinelli M, Alagia M, Donti T, Day-Salvatore D-L, Veggiotti P et al (2017) Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet. PLoS One 12:e0184022. https://doi.org/10.1371/journal.pone.0184022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leen WG, Klepper J, Verbeek MM, Leferink M, Hofste T, van Engelen BG et al (2010) Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain 133:655–670. https://doi.org/10.1093/brain/awp336

    Article  PubMed  Google Scholar 

  18. Leary LD, Wang D, Nordli DR, Engelstad K, De Vivo DC (2003) Seizure characterization and electroencephalographic features in Glut-1 deficiency syndrome. Epilepsia 44:701–707. https://doi.org/10.1046/j.1528-1157.2003.05302.x

    Article  PubMed  Google Scholar 

  19. Klepper J, Scheffer H, Leiendecker B, Gertsen E, Binder S, Leferink M et al (2005) Seizure control and acceptance of the ketogenic diet in GLUT1 deficiency syndrome: a 2- to 5-year follow-up of 15 children enrolled prospectively. Neuropediatrics 36:302–308. https://doi.org/10.1055/s-2005-872843

    Article  CAS  PubMed  Google Scholar 

  20. Klepper J (2012) GLUT1 deficiency syndrome in clinical practice. Epilepsy Res 100:272–277. https://doi.org/10.1016/j.eplepsyres.2011.02.007

    Article  CAS  Google Scholar 

  21. Alter AS, Engelstad K, Hinton VJ, Montes J, Pearson TS, Akman CI et al (2015) Long-term clinical course of Glut1 deficiency syndrome. J Child Neurol 30:160–169. https://doi.org/10.1177/0883073814531822

    Article  PubMed  Google Scholar 

  22. Hao J, Kelly DI, Su J, Pascual JM (2017) Clinical aspects of glucose transporter type 1 deficiency: information from a global registry. JAMA Neurol 74:727–732. https://doi.org/10.1001/jamaneurol.2017.0298

    Article  PubMed  PubMed Central  Google Scholar 

  23. Logel SN, Connor EL, Hsu DA, Fenske RJ, Paloian NJ, De Vivo DC (2021) Exploring diazoxide and continuous glucose monitoring as treatment for Glut1 deficiency syndrome. Ann Clin Transl Neurol 8:2205–2209. https://doi.org/10.1002/acn3.51462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tchapyjnikov D, Mikati MA (2018) Acetazolamide-responsive episodic ataxia without baseline deficits or seizures secondary to GLUT1 deficiency: a case report and review of the literature. Neurologist 23:17–18. https://doi.org/10.1097/NRL.0000000000000168

    Article  PubMed  Google Scholar 

  25. Ordoñez R, Zhang W, Ellis G, Zhu Y, Ashe HJ, Ribeiro-Dos-Santos AM et al (2023) Genomic context sensitizes regulatory elements to genetic disruption. bioRxiv [Preprint]. https://doi.org/10.1101/2023.07.02.547201

  26. Vulturar R, Chiș A, Pintilie S, Farcaș IM, Botezatu A, Login CC et al (2022) One molecule for mental nourishment and more: glucose transporter type 1—biology and deficiency syndrome. Biomedicines 10:1249. https://doi.org/10.3390/biomedicines10061249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang P, Augustin K, Boddum K, Williams S, Sun M, Terschak JA et al (2016) Seizure control by decanoic acid through direct AMPA receptor inhibition. Brain 139:431–443. https://doi.org/10.1093/brain/awv325

    Article  PubMed  Google Scholar 

  28. Sakai H, Fujii Y, Kuwayama N, Kawaji K, Gotoh Y, Kishi Y (2019) Plag1 regulates neuronal gene expression and neuronal differentiation of neocortical neural progenitor cells. Genes Cells 24:650–666. https://doi.org/10.1111/gtc.12718

    Article  CAS  PubMed  Google Scholar 

  29. Li J, O’Leary EI, Tanner GR (2017) The ketogenic diet metabolite beta-hydroxybutyrate (β-HB) reduces incidence of seizure-like activity (SLA) in a Katp- and GABAb-dependent manner in a whole-animal Drosophila melanogaster model. Epilepsy Res 133:6–9. https://doi.org/10.1016/j.eplepsyres.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  30. Lopes EF, Roberts BM, Siddorn RE, Clements MA, Cragg SJ (2019) Inhibition of nigrostriatal dopamine release by striatal GABAA and GABAB receptors. J Neurosci 39:1058–1065. https://doi.org/10.1523/JNEUROSCI.2028-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Avshalumov MV, Rice ME (2003) Activation of ATP-sensitive K+ (K(ATP)) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release. Proc Natl Acad Sci U S A 100:11729–11734. https://doi.org/10.1073/pnas.1834314100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferré S, Torvinen M, Antoniou K, Irenius E, Civelli O, Arenas E et al (1998) Adenosine A1 receptor-mediated modulation of dopamine D1 receptors in stably cotransfected fibroblast cells. J Biol Chem 273:4718–4724. https://doi.org/10.1074/jbc.273.8.4718

    Article  PubMed  Google Scholar 

  33. Cortés A, Casadó-Anguera V, Moreno E, Casadó V (2019) The heterotetrameric structure of the adenosine A1-dopamine D1 receptor complex: Pharmacological implication for restless legs syndrome. Adv Pharmacol 84:37–78. https://doi.org/10.1016/bs.apha.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  34. Striano P, Auvin S, Collins A, Horvath R, Scheffer IE, Tzadok M et al (2022) A randomized, double-blind trial of triheptanoin for drug-resistant epilepsy in glucose transporter 1 deficiency syndrome. Epilepsia 63:1748–1760. https://doi.org/10.1111/epi.17263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Varesio C, De Giorgis V, Veggiotti P, Nardocci N, Granata T, Ragona F et al (2023) GLUT1-DS Italian registry: past, present, and future: a useful tool for rare disorders. Orphanet J Rare Dis 18:63. https://doi.org/10.1186/s13023-023-02628-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Falsaperla.

Ethics declarations

Ethics approval and consent to participate

The research was conducted ethically in accordance with the World Medical Association Declaration of Helsinki and approved by ethics committee of the University of Catania, Italy (Ethical Committee Catania 1 Clinical Registration n. 180/2023/PO). Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Consent for publication

Written informed consent was obtained from the patient’s legal guardian for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 11 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falsaperla, R., Sortino, V., Vitaliti, G. et al. GLUT-1DS resistant to ketogenic diet: from clinical feature to in silico analysis. An exemplificative case report with a literature review. Neurogenetics (2024). https://doi.org/10.1007/s10048-023-00742-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10048-023-00742-8

Keywords

Navigation