Skip to main content
Log in

Temperature−Frequency Dependences of the Electrophysical Characteristics of Polyfunctional Compounds Using Guaiacol as an Example

  • Published:
Journal of Applied Spectroscopy Aims and scope

Dependences of the components of the complex dielectric permittivity and specific electrical conductivity in the frequency range 10−2–107 Hz at temperatures of 213–433 K of guaiacol, a model compound of lignin, one of the most common biopolymers, are analyzed. Three groups of relaxation oscillators are identified. Their characteristics (relaxation time and activation energy) are determined. The activation energy is shown to change depending on the aggregate state. The results indicate that the dielectric relaxation and conductivity of lignin polymer and its model compounds are similar in an alternating electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sethupathy, G. M. Morales, L. Gao, H. Wang, B. Yang, J. Jiang, J. Sun, and D. Zhu, Bioresour. Technol., 347, Article ID 126696 (2022).

  2. R. D’Orsi, C. V. Irimia, J. J. Lucejko, B. Kahraman, Y. Kanbur, C. Yumusak, M. Bednorz, F. Babudri, M. Irimia-Vladu, and A. Operamolla, Adv. Sustainable Syst., 6, Article ID 2200285 (2022).

  3. M. P. F. Grace, A. Rudnitskaya, A. C. Fernando, F. A. C. Faria, D. V. Evtuguin, M. T. S. R. Gomes, J. A. B. P. Oliveira, and L. C. Costa, Electrochim. Acta, 76, 69–76 (2012).

    Article  Google Scholar 

  4. J. H. Park, H. H. Rana, J. Y. Lee, and H. S. Park, J. Mater. Chem. A, 7, 16962–16968 (2019).

    Article  Google Scholar 

  5. W. Gindl-Altmutter, C. Furst, A. Mahendran, M. Obersriebnig, G. Emsenhuber, M. Kluge, S. Veigel, J. Keckes, and F. Liebner, Carbon, 89, 161–168 (2015).

    Article  Google Scholar 

  6. T. Gao, Y. Zhang, J. Shi, S. R. Mohamed, J. Xu, and X. Liu, Front. Microbiol., 12, Article ID 762844 (2021).

  7. H. Liu, B. Lepoittevin, C. Roddier, V. Guerineau, L. Bech, J.-M. Herry, M.-N. Bellon-Fontaine, and P. Roger, Polymer, 52, No. 9, 1908–1916 (2011).

    Article  Google Scholar 

  8. L. Fang, Y. Tao, J. Zhou, C. Wang, M. Dai, J. Sun, and Q. Fang, Polym. Chem., 12, No. 5, 766–770 (2021).

    Article  Google Scholar 

  9. S. D. Kukade and S. V. Bawankar, J. Electron. Mater., 47, 2905–2910 (2018).

    Article  ADS  Google Scholar 

  10. E. I. Chupka and T. M. Rykova, Chem. Nat. Compd., 19, 78–80 (1983).

    Article  Google Scholar 

  11. M. P. Tonkonogov, Phys.-Usp., 41, No. 1, 25–48 (1998).

    Article  ADS  Google Scholar 

  12. K. G. Bogolitsyn, S. S. Khviyuzov, A. S. Volkov, G. D. Koposov, and M. A. Gusakova, Russ. J. Phys. Chem. A, 93, 353–358 (2019).

    Article  Google Scholar 

  13. J. J. Lindberg, Acta Chem. Scand., 14, 379–384 (1960).

    Article  Google Scholar 

  14. C. G. Nordstrom and J. J. Lindberg, Suomen. Kemistil., 38, No. 1, 3291–3295 (1965).

    Google Scholar 

  15. S. Havriliak and S. Negami, J. Polym. Sci., Part C: Polym. Symp., 14, 99–117 (1966).

  16. K. S. Cole and R. H. Cole, J. Chem. Phys., 9, 341–351 (1941).

    Article  ADS  Google Scholar 

  17. P. Debye, Polar Molecules, Chemical Catalog Co., New York (1929).

    Google Scholar 

  18. D. W. Davidson and R. H. Cole, J. Chem. Phys., 19, 1484–1490 (1951).

    Article  ADS  Google Scholar 

  19. G. Wilke and M. Stockhausen, Phys. Chem. Liq., 33, No. 1, 57–63 (1996).

    Article  Google Scholar 

  20. F. F. Hanna and A. M. Bishai, Z. Phys. Chem., 259, 849–855 (1978).

    Google Scholar 

  21. G. D. Koposov and A. V. Tyagunin, Physics of Passive Dielectrics [in Russian], KIRA, Arkhangelʹsk (2013).

  22. S. Khviyuzov, K. Bogolitsyn, A. Volkov, G. Koposov, and M. Gusakova, Holzforschung, 74, No. 12, 1113–1122 (2020).

    Article  Google Scholar 

  23. A. S. Volkov, G. D. Koposov, and S. S. Khviyuzov, Chem. Phys., 548, Article ID 111202 (2021).

  24. K. G. Bogolitsyn and S. S. Khviyuzov, Polym. Bull., 80, No. 1, 1001–1015 (2023).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Khviyuzov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 6, pp. 902–909, November–December, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, A.S., Khviyuzov, S.S. Temperature−Frequency Dependences of the Electrophysical Characteristics of Polyfunctional Compounds Using Guaiacol as an Example. J Appl Spectrosc 90, 1259–1266 (2024). https://doi.org/10.1007/s10812-024-01662-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01662-7

Keywords

Navigation