Skip to main content
Log in

Simple and Economical Uv-Spectrophotometric Method for Simultaneous Estimation of Chlorthalidone and Nebivolol in Combined Tablet Dosage Form: An Alternative Approach to the HPLC Method

  • Published:
Journal of Applied Spectroscopy Aims and scope

Three simple and affordable UV spectrophotometric methods have been proposed for the simultaneous determination of chlorthalidone and nebivolol in a synthetic mixture, as well as a combined dosage form. Method I use the simultaneous equation methodology and has a linearity range of 5–25 μg/mL for chlorthalidone at 233 nm and 5–90 μg/mL for nebivolol at 280 nm respectively. The linearity ranges for chlorthalidone at 228–238 nm and nebivolol at 275–285 nm were found to be 5–60 and 5–100 μg/mL respectively, using method II, the area under the curve method. The linearity range for method III, the first derivative method, is 10–35 μg/mL for chlorthalidone at 227 nm and 10–35 μg/mL for nebivolol at 275 nm. The two diagnostic plot residuals normal probability plot and residuals versus expected values plot are utilized for the verification of outcome data and found to be optimal for three methods. The method has been validated for accuracy, precision, recovery studies, linearity, specificity, and stability studies according to the International Council of Harmonisation guideline Q2R1. These developed methods have been utilized in routine analysis for the simultaneous determination of chlorthalidone and nebivolol without pre-extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. U. Maneesh, S. S. Ahmed, T. Y. Pasha, B. Ramesh, and M. Majumder, J. Chromatogr. Sci., 59, 27–33 (2021).

    Article  Google Scholar 

  2. J. Fongemie and G. E. Felix, Drugs, 75, 1349–1371 (2015) .

    Article  Google Scholar 

  3. S. A. Sorrentino, C. Doerries, C. Manes, T. Speer, C. Dessy, and I. Lobysheva, J. Am. Coll. Cardiol., 57, 601–611 (2011), https://doi.org/10.1016/j.jacc.2010.09.037.

    Article  Google Scholar 

  4. J. Varagic, H. Punzi, and C. M. Ferrario, Integr. Blood Press Control., 7, 61–70 (2014).

    Google Scholar 

  5. D. L. Blowey, Nephrology, 31, 2223–2233 (2016).

    Google Scholar 

  6. E. Malacco, High Blood Press. Cardiovasc. Prev., 15, 75–84 (2008).

    Article  Google Scholar 

  7. N. S. Abdullah, M. A. Hassan, and R. O. Hassan, Arab. J. Chem., 10, 3426–3433 (2017), https://doi.org/10.1016/j.arabjc.2014.02.002.

    Article  Google Scholar 

  8. ALGAS ORGANICS InterLab. Certificate of Analysis Certificate of Analysis, Sigma-Aldrich, 86, 1 (2019), https://cellgenix.com/products/gmp-scgm/.

  9. N. S. Abdullah, M. A. Hassan, and R. O. Hassan, Arab. J. Chem., 10, 3426–3433 (2017), https://doi.org/10.1016/j.arabjc.2014.02.002.

    Article  Google Scholar 

  10. K. Attala and A. Elsonbaty, Spectrochim. Acta A: Mol. Biomol Spectrosc., 258, Article ID 119855 (2021), https://doi.org/10.1016/j.saa.2021.119855.

  11. R. Soundharya, V. Aruna, G. V. Amruthavalli, and R. Gayathri, Int. J. Adv. Pharm., 8, Article ID e5150 (2019), https://doi.org/10.7439/ijap.

  12. S. Dey, J. Pharm. Innov., 3, 76–80 (2014).

    Google Scholar 

  13. W. M. Eebeid, E. F. Eelkady, E. Zaher, E. Bagary, and G. Patonay, Anal. Chem. Insights., 9, 33–40 (2014).

    Article  Google Scholar 

  14. A. H. Kamal, A. A. Marie, and S. F. Hammad, Microchem. J., 155 (2020), https://doi.org/10.1016/j.microc.2020.104741.

  15. M. M. Kamila, N. Mondal, L. K. Ghosh, and B. K. Gupta, Pharmazie, 62, 486–487 (2007).

    Google Scholar 

  16. C. Kumar, M. Kumar, V. Saini, S. Bhatt, A. Pandurangan, and A. Malik, Res. J. Pharm. Technol., 12, Article ID 2742 (2019).

  17. Y. A. Martins and De. Oliveira, J. Appl. Spectrosc., 86, 629–635 (2019).

  18. E. M. Meselhy, A. A. A. Kheir, E. Henawee, and M. S. Elmasry, Spectrochim. Acta A, 230 (2020), https://doi.org/10.1016/j.saa.2020.118083.

  19. S. N. Meyyanathan, A. S. Birajdar, and B. Suresh, Ind. J. Pharm. Educ. Res., 44, 156–159 (2020).

    Google Scholar 

  20. P. Mishra, K. Shah, and A. Gupta, Int. J. Pharm. Pharm. Sci., 2, 55–61 (2009).

    Google Scholar 

  21. H. R. Raval, D. M. Patel, and C. N. Patel, Res. J. Pharm. Technol., 4, 1132–1134 (2011)

    Google Scholar 

  22. S. Patel, M. Hinge, and V. Bhanushali, J. Pharm. Res., 9, 41–45 (2015).

    Google Scholar 

  23. A. Gajbhiye and N. Dwivedi, Current Trend Tech. Sci., 1, 118–121 (2012)

    Google Scholar 

  24. S. U. Ingle, P. A. Patil, V. C. Kulkarni, S. V. Patil, and P. A. Salunke, Health Qual. Life. Outcomes., 5, 63 (2007).

    Article  Google Scholar 

  25. N. Sirisha, A. Haripriya, B. N. Swetha, R. Bhagirath, M. Satyanarayana, and P. D. Anumolu, Der. Pharm. Lett., 5, 78–84 (2013).

    Google Scholar 

  26. S. Walsangikar, S. Ghate, R. Patrakar, A. Deshpande, S. Patil, and A. Gadgul, Int. J. Drug. Dev. Res., 2, 635–642 (2010).

    Google Scholar 

  27. E. A. Abdel, R. A. A. Salam, and G. M. Hadad, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 141, 278–286 (2015), https://doi.org/10.1016/j.saa.2015.01.035.

    Article  Google Scholar 

  28. M. S. Charde, J. Kumar, A. S. Welankiwar, and R. D. Chakole, Int. J. Pharm., 2, 25–33 (2013).

    Article  Google Scholar 

  29. V. M. Dave and D. G. Maheshwari, Int. J. Pharma Sci. Res., 6, 666–673(2015).

    Google Scholar 

  30. M. S. Elgawish, S. M. Mostafa, and A. A. Elshanawane, Saudi. Pharm. J., 19, 43–49 (2011), https://dx.doi.org/https://doi.org/10.1016/j.jsps.2010.10.003.

    Article  Google Scholar 

  31. S. Hingde, World J. Pharm. Res., 6, 936–945 (2017).

    ADS  Google Scholar 

  32. M. A. Hinge, V. M. Bhanusali, and R. J. Mahida, Anal. Chem. Lett., 6, 408–420 (2016), doi: https://doi.org/10.1080/22297928.2016.1206834.

    Article  Google Scholar 

  33. Y. A. Chaudhari, V. R. Patil, R. R. Gujar, K. R. Patil, and S. Nangare, Res. J. Pharm. Dosage Form. Tech., 14, 63–71 (2022), doi: https://doi.org/10.52711/0975-4377.2022.00011.

    Article  Google Scholar 

  34. C. Kharat, V. A. Shirsat, Y. M. Kodgule, and M. Kodgule, Int. J. Anal. Chem. (2020), https://doi.org/10.1155/2020/3593805.

    Article  Google Scholar 

  35. S. U. Kokil and M. S. Bhatia, Indian. J. Pharm. Sci., 71, 111–114 (2009).

    Google Scholar 

  36. R. A. Kumar, G. R. Babu, M. Sowjanya, and M. Ramayyappa, Asian J. Res. Chem. Pharm. Sci., 14, 168–172 (2021), doi: https://doi.org/10.52711/0974-4150.2021.00031.

    Article  Google Scholar 

  37. T. H. Kumar, A. Begum, and D. G. Sankar, Biomed. Res., 30 (2019).

  38. J. Mehta and N. G. Vyas, Int. J. Pharm.Tech. Res., 9, 1139–1147 (2019).

    Google Scholar 

  39. S. Meyyanathan, S. Rajan, S. Muralidharan, A. Birajdar, and B. Suresh, Ind. J. Pharm. Sci., 70, 687–689 (2008).

    Article  Google Scholar 

  40. R. A. Mhaske, S. Sahasrabudhe, and A. A. Mhaske, Int. J. Pharm. Sci., 3, 1116–1123 (2012).

    Google Scholar 

  41. R. A. Mhaske, D. J. Garole, A. A. Mhaske, and S. Sahasrabudhe, Int. J. Pharm. Sci., 3, 141–149 (2012).

    Google Scholar 

  42. R. A. Mhaske and D. Raigad, Int. J. Pharm. Sci., 3, 793–801 (2012).

    Google Scholar 

  43. P. S. Prasanna, K. Thejomoorthy, and S. K. S. Bhanu, World J. Pharm. Res., 7, 860–873 (2018).

    Google Scholar 

  44. V. T. Pawar, S. V. Pawar, H. N. More, A. S. Kulkarni, and D. T. Gaikwad, Res. J. Pharm. Technol., 10, 3990 (2017).

    Article  Google Scholar 

  45. V. Rajoriya and V. Kashaw, Anal. Chem. Lett., 7, 520–530 (2017).

    Article  Google Scholar 

  46. L. Rao, C. R. Lakshmi, and C. Rambabu, Int. J. Pharm. Res., 3, 149–151 (2011).

    Google Scholar 

  47. P. R. Ravi, R. Vats, S. Joseph, and N. Gadekar, Acta Chromatogr., 27, 2281–2294 (2015).

    Google Scholar 

  48. A. Sheth, C. Patel, B. Ramlingam, and N. Shah, Sch. Res. J., 2, 17 (2012).

    Article  Google Scholar 

  49. N. Singhal, K. Gaur, A. Singh, and K. S. Sekhawat, Int. Sci. Res. Notices (2013), https://doi.org/10.1155/2013/834240

    Article  Google Scholar 

  50. B. V. Rao, S. Vidyadhara, G. Kumar, and M. Rao, Der. Pharm. Lett., 6, 301–317 (2014).

    Google Scholar 

  51. B. Yilmaz, Int. J. Pharm. Sci. Rev. Res., 1, 14–17 (2010).

    Google Scholar 

  52. Q. Yang, J. Sun, C. Li, H. Zhang, W. Xu, C. Liu, and X. Zheng, J. Pharm. Biomed. Anal., 10, 479–485 (2019).

    Article  Google Scholar 

  53. P. Kancherla, P. Alegete, S. Keesari, B. Khagga, S. Siddiraju, and M. Khagga, Br. J. Pharm. Res., 14, 1–13 (2016).

    Article  Google Scholar 

  54. V. Nalawade and S. Joshi, J. Pharm. Sci. Res., 11, 2533–2537 (2019).

    Google Scholar 

  55. J. Nandania, S. J. Rajput, P. Contractor, P. Vasava, B. Solanki, and M. Vohra, J. Chromatogr. B: Biomed. Appl., 1, 110–119 (2013), https://doi.org/10.1016/j.jchromb.2013.01.034.

    Article  Google Scholar 

  56. B. M. Patel, A. G. Jangid, B. N. Suhagia, and N. Desai, J. Pharm. Biomed. Anal., 151, 244–251 (2018), https://doi.org/10.1016/j.jpba.2018.01.004.

    Article  Google Scholar 

  57. B. Patel, A. G. Jangid, B. N. Suhagia, and N. Desai, Biomed. Chromatogr., 31 ( 2017).

  58. N. V. S. Ramakrishna, K. N. Vishwottam, M. Koteshwara, S. Manoj, M. Santosh, and D. P. Varma, J. Pharm. Biomed. Anal., 39, 1006–1013 (2005).

    Article  Google Scholar 

  59. R. Ramakrishna, P. S. kumar, M. Bhateria, V. Bala, V. L. Sharma, and R. S. Bhatta, J. Chromatogr. B. Anal. Technol. Biomed. Life Sci., 990, 185–189 (2015), https://doi.org/10.1016/j.jchromb.2015.03.018.

  60. P. S. Rawat, P. R. Ravi, L. Kaswan, and R. S. Raghuvanshi, J. Chromatogr. B: Anal. Technol. Biomed. Life. Sci., 1136, Article ID 121908 (2020), https://doi.org/10.1016/j.jchromb.2019.121908.

  61. P. S. Selvan, K. V. Gowda, U. Mandal, W. D. S. Solomon, and T. K. Pal, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 858, 143–150 (2007).

    Article  Google Scholar 

  62. A. Vekariya, S. Pandya, T. Pethani, and N. Vadia, Chem. Lett., 11, 741–755 (2021).

    Google Scholar 

  63. C. P. Vieira, D. V. Neves, E. J. Cesarino, A. Rocha, S. Poirier, and V. L. Lanchote, J. Pharm. Biomed. Anal., 144, 25–30 (2017), https://doi.org/10.1016/j.jpba.2017.01.054.

    Article  Google Scholar 

  64. Validation of Analytical P Text and Methodology Q2(R1), https://database.ich.org/sites/default/files/Q2_R1__Guideline.pdf. Accessed 21 Oct 2022.

  65. T. Sivakumar, R. Manavalan, C. Muralidharan, and K. Valliappan, J. Sep. Sci., 30, 3143–3153 (2007).

    Article  Google Scholar 

  66. S. Khodadoust and M. Ghaedi, J. Sep. Sci., 36, 1734–1742 (2013).

    Article  Google Scholar 

  67. R. A. Olivero, J. M. Nocerino, and S. N. Deming, Hand. Environ. Chem., 2, 73–122 (1995).

    Google Scholar 

  68. C. Stalikas, Y. Fiamegos, V. Sakkas, and T. Albanis, J. Chromatogr. A, 1216, 175–189 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Manish.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 6, p. 972, November–December, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagyalakshmi, C., Rekha, T.N., Sagheer, A.S. et al. Simple and Economical Uv-Spectrophotometric Method for Simultaneous Estimation of Chlorthalidone and Nebivolol in Combined Tablet Dosage Form: An Alternative Approach to the HPLC Method. J Appl Spectrosc 90, 1384–1394 (2024). https://doi.org/10.1007/s10812-024-01676-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01676-1

Keywords

Navigation