Skip to main content
Log in

Gene expression, proteomic, and metabolic profiles of Brazilian soybean genotypes reveal a possible mechanism of resistance to the velvet bean caterpillar Anticarsia gemmatalis

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Brazil is the world’s largest producer of soybeans, and the crop is one of the most important contributors to the economy. Soybeans often suffer damage from insect pests, such as Anticarsia gemmatalis, which also attacks other crops. Genotypes of soybeans have been used to decipher the resistance mechanisms by evaluating the activity of defense compounds such as protease inhibitors (PIs) and flavonols. However, the genetic determinants of resistance have not been thoroughly investigated. This study used the response of resistant and susceptible genotypes of soybean to evaluate genes and proteins responsive to caterpillar attack and involved in the biosynthesis of methylated and glycosylated flavonols. Rutin and isorhamnetin rutinoside were produced constitutively in the resistant genotypes IAC 17 and IAC 100. Following insect attack, genes encoding flavonol synthase and methyltransferases were highly upregulated in IAC 17. Some herbivory defense responses appear constitutive, while others were induced or JA-independent, as verified for flavonol levels. Salicylic acid levels were higher in IAC 17 and IAC 100. Proteins not yet characterized for their involvement in plant–insect interactions, such as transmembrane receptors and transcription factors, were upregulated in the resistant genotype IAC 17. It appears constitutive flavonol biosynthesis in both IAC 17 and IAC 100 was inherited from the PI229358 parent, making the two genotypes good genetic sources to study flavonol biosynthesis and their relationship with insect resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to thank NuBioMol (Center for Analyses of Biomolecules-UFV, Brazil) for the infrastructure and technical assistance. This study was supported by the National Institute of Science and Technology in Plant–Pest Interaction (INCT-IPP), Instituto Agronômico de Campinas (IAC), the Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto J. O. Ramos.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Wei Xu and Heikki Hokkanen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, V.J.M., Gómez, J.D., Gouveia, A.S. et al. Gene expression, proteomic, and metabolic profiles of Brazilian soybean genotypes reveal a possible mechanism of resistance to the velvet bean caterpillar Anticarsia gemmatalis. Arthropod-Plant Interactions 18, 15–32 (2024). https://doi.org/10.1007/s11829-023-10030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-023-10030-9

Keywords

Navigation