Skip to main content
Log in

Bismuth oxide nanoparticles/waterborne polyurethane-coated fabrics for ionizing radiation protection

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Ionizing radiation is the energy in the form of waves or particles that has the power to eject electrons from atoms and its main sources are radiological and nuclear medical examinations, cancer treatments, X-rays and gamma rays used in industry, and nuclear accidents. Since ionizing radiation has negative effects on human health, it is important to be protected against it by using shielding materials. In this study, a coating material comprising nano bismuth oxide and waterborne polyurethane (40% w/w WPU and 60% w/w Bi2O3) was developed and applied on to a commercially available, lightweight woven fabrics for fabricating wearable as well as flexible shielding materials. The X-ray shielding performance of the samples was measured as described in standard TS EN 61331-1:2014 at tube voltages of 40 kV, 60 kV, 80 kV, and 100 kV. In addition to the characterization analyses (i.e. SEM–EDS and FTIR), the coated fabrics were also subjected to some textile based performance tests, namely, water contact angle, abrasion, and stiffness in accordance with the relevant standards. The results of nano bismuth oxide and waterborne polyurethane-coated fabrics demonstrated promising results not only for X-ray shielding performance but also for the tested textile properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moore, B, VanSonnenberg, E, Casola, G, Novelline, RA, “The Relationship Between Back Pain and Lead Apron Use in Radiologists.” AJR Am. J. Roentgenol., 158 (1) 191–193 (1992)

    Article  CAS  Google Scholar 

  2. Ross, AM, Segal, J, Borenstein, D, Jenkins, E, Cho, S, “Prevalence of Spinal Disc Disease Among Interventional Cardiologists.” Am. J. Cardiol., 79 (1) 68–70. https://doi.org/10.1016/S0002-9149(96)00678-9 (1997)

    Article  CAS  Google Scholar 

  3. Mori, H, Koshida, K, Ishigamori, O, Matsubara, K, “Evaluation of the Effectiveness of X-ray Protective Aprons in Experimental and Practical Fields.” Radiol. Phys. Technol., 7 158–166 (2014)

    Article  Google Scholar 

  4. Azman, NN, Siddiqui, S, Hart, R, Low, IM, Yeow, JT, “Effect of Particle Size, Filler Loadings and X-Ray Tube Voltage on the Transmitted X-Ray Transmission in Tungsten Oxide-Epoxy Composites.” Appl. Radiat. Isot., 71 62–67. https://doi.org/10.1016/j.apradiso.2012.09.012 (2013)

    Article  CAS  Google Scholar 

  5. Aral, N, Nergis, FB, Candan, C, “An Alternative X-ray Shielding Material Based on Coated Textiles.” Text. Res. J., 86 (8) 803–811. https://doi.org/10.1177/0040517515590409 (2016)

    Article  CAS  Google Scholar 

  6. Ambika, MR, Nagaiah, N, Suman, S, “Role of Bismuth Oxide Asa Reinforcer on Gamma Shielding Ability of Unsaturated Polyester Based Polymer Composites.” J. Appl. Polym. Sci.,. https://doi.org/10.1002/app.44657 (2016)

    Article  Google Scholar 

  7. Aral, N, Nergis, FB, Candan, C, “The X-ray Attenuation and the Flexural Properties of Lead-Free Coated Fabrics.” J. Ind. Text., 47 (2) 252–268. https://doi.org/10.1177/1528083716644287 (2017)

    Article  CAS  Google Scholar 

  8. Burgio, E, Piscitelli, P, Migliore, L, “Ionizing Radiation and Human Health: Reviewing Models of Exposure and Mechanisms of Cellular Damage. An Epigenetic Perspective.” Int. J. Environ. Res. Public Health, 15 (9) 1971. https://doi.org/10.3390/ijerph15091971 (2018)

    Article  CAS  Google Scholar 

  9. Okonkwo, UC, Idumah, CI, Okafor, CE, Ohagwu, CC, Aronu, ME, Okokpujie, IP, Chukwu, NN, Chukwunyelu, CE, “Development, Characterization, and Properties of Polymeric Nanoarchitectures for Radiation Attenuation.” J. Inorg. Organomet. Polym. Mater., 32 4093–4113. https://doi.org/10.1007/s10904-022-02420-y (2022)

    Article  CAS  Google Scholar 

  10. Prabhu, S, Bubbly, SG, Gudennavar, SB, “X-ray and γ-ray Shielding Efficiency of Polymer Composites: Choice of Fillers, Effect of Loading and Filler Size, Photon Energy and Multifunctionality.” Polym. Rev., 1–43 https://doi.org/10.1080/15583724.2022.2067867 (2022)

  11. McAlister, DR, Gamma Ray Attenuation Properties of Common Shielding Materials. University Lane Lisle, USA (2012)

    Google Scholar 

  12. Suzuki, H, Komatsu, N, Ogawa, T, Murafuji, T, Ikegami, T, Matano, Y, Organobismuth Chemistry. Elsevier, Amsterdam (2001)

    Google Scholar 

  13. Nambiar, S, Osei, EK, Yeow, JT, “Polymer Nanocomposite-Based Shielding Against Diagnostic X-Rays.” J. Appl. Polym. Sci., 127 4939–4946. https://doi.org/10.1002/app.37980 (2013)

    Article  CAS  Google Scholar 

  14. Fontainha, CCP, Faria, LO, Neto, AB, “Polymer-Based Nanocomposites of P(VDFTrFE)/Bi2O3 Applied to X-Ray Shielding.” Res. Rev. J. Mater. Sci., 4 16–23. https://doi.org/10.4172/2321-6212.1000149 (2016)

    Article  Google Scholar 

  15. Maghrabi, HA, Vijayan, A, Deb, P, Wang, L, “Bismuth Oxide-Coated Fabrics for X-Ray Shielding.” Text. Res. J., 86 (6) 1649–1655. https://doi.org/10.1177/0040517515592809 (2015)

    Article  CAS  Google Scholar 

  16. Noor Azman, NZ, Musa, NF, Ab Razak, NNN, Ramli, RM, Mustafa, IS, Rahman, AA, Yahaya, NZ, “Effect of Bi2O3 Particle Sizes and Addition of Starch into Bi2O3–PVA Composites for X-Ray Shielding.” Appl. Phys. A, 122 (9) 818. https://doi.org/10.1007/s00339-016-0329-8 (2016)

    Article  CAS  Google Scholar 

  17. Pulford, S, Fergusson, M, “A Textile Platform for Non-Lead Radiation Shielding Apparel.” J. Text. Inst., 107 (12) 1610–1616. https://doi.org/10.1080/00405000.2015.1131402 (2016)

    Article  CAS  Google Scholar 

  18. Singh, AK, Singh, RK, Sharma, B, Tyagi, AK, “Characterization and Biocompatibility Studies of Lead-Free X-ray Shielding Polymer Composite for Healthcare Application.” Radiat. Phys. Chem., 138 9–15. https://doi.org/10.1016/j.radphyschem.2017.04.016 (2017)

    Article  CAS  Google Scholar 

  19. Alshahri, S, Alsuhybani, M, Alosime, E, Almurayshid, M, Alrwais, A, Alotaibi, S, “LDPE/Bismuth Oxide Nanocomposite: Preparation, Characterization and Application in X-Ray Shielding.” Polymers, 13 (18) 3081. https://doi.org/10.3390/polym13183081 (2021)

    Article  CAS  Google Scholar 

  20. Li, Z, Zhou, W, Zhang, X, Gao, Y, Guo, S, “High-Efficiency, Flexibility and Lead-Free X-ray Shielding Multilayered Polymer Composites: Layered Structure Design and Shielding Mechanism.” Sci. Rep., 11 (1) 1–13. https://doi.org/10.1038/s41598-021-83031-4 (2021)

    Article  CAS  Google Scholar 

  21. Moonkum, N, Pilapong, C, Daowtak, K, Tochaikul, G, “Evaluation of Silicone Rubber Shielding Material Composites Enriched with BaSO4 and Bi2O3 Particles for Radiation Shielding Properties.” Mater. Res. Innov., 1–8 (2022)

  22. Maghrabi, H, Deb, P, Vijayan, A, Wang, L, “An Overview of Lead Aprons for Radiation Protection: Are They Doing Their Best?” In: Proceedings of the 8th Textile Bioengineering and Informatics Symposium (TBIS 2015), Zadar, Croatia, 14–17 June 2015

  23. Qu, L, Tian, M, Zhang, X, Guo, X, Zhu, S, Han, G, Li, C, “Barium Sulfate/Regenerated Cellulose Composite Fiber with X-ray Radiation Resistance.” J. Ind. Text., 45 (3) 352–367. https://doi.org/10.1177/1528083714534708 (2015)

    Article  CAS  Google Scholar 

  24. Günther, K, Giebing, C, Askani, A, Leisegang, T, Krieg, M, Kyosev, Y, Weide, T, Mahltig, B, “Cellulose/Inorganic-Composite Fibers for Producing Textile Fabrics of High X-ray Absorption Properties.” Mater. Chem. Phys., 167 125–135. https://doi.org/10.1016/j.matchemphys.2015.10.019 (2015)

    Article  CAS  Google Scholar 

  25. Kim, SC, Son, JS, “Double-Layered Fiber for Lightweight Flexible Clothing Providing Shielding from Low-Dose Natural Radiation.” Sci. Rep., 11 (1) 1–9. https://doi.org/10.1038/s41598-021-83272-3 (2021)

    Article  CAS  Google Scholar 

  26. Kim, SC, “Construction of a Medical Radiation-Shielding Environment by Analyzing the Weaving Characteristics and Shielding Performance of Shielding Fibers Using X-ray-Impermeable Materials.” Mater. Appl. Sci., 11 (4) 1705. https://doi.org/10.3390/app11041705 (2021)

    Article  CAS  Google Scholar 

  27. Yu, L, Yap, PL, Santos, AM, Tran, DN, Losic, D, “Lightweight Polyester Fabric with Elastomeric Bismuth Titanate Composite for High-Performing Lead-free X-ray Shielding.” Radiat. Phys. Chem., 205 110726 (2023)

    Article  CAS  Google Scholar 

  28. Mehrjardi, AZ, Gholamzadeh, L, Zafari, F, “Coating of Polyester Fabrics with Micro-Particles of Bi2O3 and BaO for Ionization Ray Shielding.” Appl. Radiat. Isot., 192 110573. https://doi.org/10.1016/j.apradiso.2022.110573 (2023)

    Article  CAS  Google Scholar 

  29. Jamil, M, Hazlan, MH, Ramli, RM, Noor Azman, NZ, “Study of Electrospun PVA-Based Concentrations Nanofibre Filled with Bi2O3 or WO3 as Potential X-ray Shielding Material.” Radiat. Phys. Chem., 156 272–282. https://doi.org/10.1016/j.radphyschem.2018.11.018 (2019)

    Article  CAS  Google Scholar 

  30. Asgari, M, Afarideh, H, Ghafoorifard, H, Amirabadi, EA, “Comparison of Nano/Micro Lead, Bismuth and Tungsten on the Gamma Shielding Properties of the Flexible Composites Against Photon in Wide Energy Range (40–662 keV).” Nucl. Eng. Technol., 53 (12) 4142–4149. https://doi.org/10.1016/j.net.2021.06.022 (2021)

    Article  CAS  Google Scholar 

  31. Muthamma, MV, Prabhu, S, Bubbly, SG, Gudennavar, SB, “Micro and Nano Bi2O3 Filled Epoxy Composites: Thermal, Mechanical and γ-Ray Attenuation Properties.” Appl. Radiat. Isot., 174 109780. https://doi.org/10.1016/j.apradiso.2021.109780 (2021)

    Article  CAS  Google Scholar 

  32. Verdipoor, K, Alemi, A, Mesbahi, A, “Photon Mass Attenuation Coefficients of a Silicon Resin Loaded with WO3, PbO, and Bi2O3 Micro and Nano-Particles for Radiation Shielding.” Radiat. Phys. Chem., 147 85–90. https://doi.org/10.1016/j.radphyschem.2018.02.017 (2018)

    Article  CAS  Google Scholar 

  33. Almuqrin, AH, Sayyed, MI, Elsafi, M, Khandaker, MU, “Comparison of Radiation Shielding Ability of Bi2O3 Micro and Nanoparticles for Radiation Shields.” Radiat. Phys. Chem., 200 110170. https://doi.org/10.1016/j.radphyschem.2022.110170 (2022)

    Article  CAS  Google Scholar 

  34. Li, Q, Wei, Q, Zheng, W, Zheng, Y, Okosi, N, Wang, Z, Su, M, “Enhanced Radiation Shielding with Conformal Light-Weight Nanoparticle-Polymer Composite.” ACS Appl. Mater. Interfaces, 10 (41) 35510–35515. https://doi.org/10.1021/acsami.8b10600 (2018)

    Article  CAS  Google Scholar 

  35. Hassan, HE, Badran, HM, Aydarous, A, Sharshar, T, “Studying the Effect of Nano Lead Compounds Additives on the Concrete Shielding Properties for γ-rays.” Nucl. Instrum. Methods Phys. Res. Sect. B, 360 81–89. https://doi.org/10.1016/j.nimb.2015.07.126 (2015)

    Article  CAS  Google Scholar 

  36. Zhou, D, Zhang, Q-P, Zheng, J, Wu, Y, Zhao, Y, Zhou, Y-L, “Co-shielding of Neutron and γ-ray with Bismuth Borate Nanoparticles Fabricated via a Facile Sol–Gel Method.” Inorg. Chem. Commun., 77 55–58. https://doi.org/10.1016/j.inoche.2017.01.034 (2017)

    Article  CAS  Google Scholar 

  37. Mahmoud, ME, El-Khatib, AM, Badawi, MS, Rashad, AR, El-SharkawyRM, TAA, “Fabrication, Characterization Andgamma Rays Shielding Properties of Nano and Micro Lead Oxide-Dispersed-High Density Polyethylene Composites.” Radiat. Phys. Chem., 145 160–173. https://doi.org/10.1016/j.radphyschem.2017.10.017 (2018)

    Article  CAS  Google Scholar 

  38. Mesbahi, A, Ghiasi, H, “Shielding Properties of the Ordinary Concrete Loaded with Micro- and Nano-Particles Against Neutronand Gamma Radiations.” Appl. Radiat. Isot., 136 27–31. https://doi.org/10.1016/j.apradiso.2018.02.004 (2018)

    Article  CAS  Google Scholar 

  39. Mansouri, E, Tarhriz, V, Yousefi, V, Dilmaghani, A, “Intercalationand Release of an Anti-inflammatory Drug into Designed Three-dimensionally Layered Double Hydroxide Nanostructure via Calci-Nation–Reconstruction Route.” Adsorption, 26 835–842. https://doi.org/10.1007/s10450-020-00217-4 (2020)

    Article  CAS  Google Scholar 

  40. Kim, S-C, Cho, S-H, “Analysis of the Correlation Between Shielding Material Blending Characteristics and Porosity for Radiation Shielding Films.” Appl. Sci., 9 1765. https://doi.org/10.3390/app9091765 (2019)

    Article  CAS  Google Scholar 

  41. Artemev, VA, “Estimate of Neutron Attentuation and Moderation by Nanostructural Materials.” At. Energy, 94 282–285. https://doi.org/10.1023/A:1024758306635 (2003)

    Article  CAS  Google Scholar 

  42. Ambika, M, Nagaiah, N, Harish, V, Lokanath, N, Sridhar, M, Renukappa, N, Suman, S, “Preparation and Characterisation of Isophthalic-Bi2O3 Polymer Composite Gamma Radiation Shields.” Radiat. Phys. Chem., 130 351–358. https://doi.org/10.1016/j.radphyschem.2016.09.022 (2017)

    Article  CAS  Google Scholar 

  43. Malekzadeh, R, Mehnati, P, Sooteh, MY, Mesbahi, A, “Influence of the Size of Nano- and Microparticles and Photon Energy on Massattenuation Coefficients of Bismuth–Silicon Shields in Diagnostic Radiology.” Radiol. Phys. Technol., 12 (3) 325–334. https://doi.org/10.1007/s12194-019-00529-3 (2019)

    Article  Google Scholar 

  44. Wortmann, M, Frese, N, Hes, L, Gölzhäuser, A, Moritzer, E, Ehrmann, A, “Improved Abrasion Resistance of Textile Fabrics Due to Polymer Coatings.” J. Ind. Text., 49 (5) 572–583 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding by ITU Scientific Research and Development Support Program under the Grant Number MYL-2021-42927.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilge Koyuncu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyuncu, B., Aral, N., Candan, C. et al. Bismuth oxide nanoparticles/waterborne polyurethane-coated fabrics for ionizing radiation protection. J Coat Technol Res (2024). https://doi.org/10.1007/s11998-023-00864-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11998-023-00864-6

Keywords

Navigation