Skip to main content
Log in

Modern Molecular Genetic Methods and Prospects for Their Use for Indication and Identification of Yersinia pestis Strains

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

The review provides an analysis of the literature data on the use of various modern molecular genetic methods for the indication and identification of Yersinia pestis strains with different properties and degrees of virulence, which is due to the diverse natural conditions in which they circulate. The methods are also considered from the perspective of their application at three levels of organizations forming the system of laboratory diagnostics of infectious diseases of the Russian Federation (territorial, regional, and federal) to solve the problem of maintaining the sanitary and epidemiological well-being of the country’s population. The main conditional groups of methods are considered: based on the analysis of the lengths of restriction fragments (ribo- and IS-typing, pulse gel electrophoresis); based on the analysis of specific fragments (DFR typing, VNTR typing); based on sequencing (MLST, CRISPR analysis, SNP analysis); PCR methods (including IPCR, SPA); isothermal amplification methods (LAMP, HDA, RPA, SEA, PCA, SHERLOCK); DNA microarray; methods using aptamer technology; bio- and nanosensors; DNA origami; and methods based on neural networks. As a result of the analysis, it can be concluded that there is rapid development of molecular diagnostics and genetics, which is aimed at increasing efficiency, multifactority, and simplification of application with no need for expensive equipment and highly qualified personnel for analysis. At all levels of the organizations forming the system of laboratory diagnostics of infectious diseases of the Russian Federation, it is possible to use methods based on PCR, isothermal amplification, SHERLOCK, biosensors, and small-sized sequencing devices. At the territorial level, at antiplague stations, the use of immuno-PCR and SPA for the indication of Y. pestis is promising. At the regional level, the introduction of technologies based on the use of aptamers and DNA microarray looks promising. At the federal level, the use of DNA origami methods and new technologies of whole genome sequencing is promising in the framework of advanced identification, molecular typing, and sequencing of the genomes of plague pathogen strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Onishchenko, G.G., Smolenskii, V.Yu., Ezhlova, E.B., Demina, Yu.V., Toporkov, V.P., Toporkov, A.V., Lyapin, M.N., and Kutyrev, V.V., Conceptual foundations of biological safety. Part 1, Vestn. Ross. Akad. Med. Nauk, 2013, no. 10, pp. 4–13.

  2. Onishchenko, G.G., Kutyrev, V.V., Krivulya, S.D., Fedorov, Yu.M., and Toporkov, V.P., Strategy for combating infectious diseases and sanitary protection of territories in modern conditions, Probl. Osobo Opasnykh Infekts., 2006, no. 2, pp. 5–9.

  3. Eroshenko, G.A., Krasnov, Ya.M., Nosov, N.Yu., Kukleva, L.M., Nikiforov, K.A., Oglodin, E.G., and Kutyrev, V.V., Improving the subspecies classification of Yersinia pestis based on data from whole-genome sequencing of strains from Russia and neighboring countries, Probl. Osobo Opasnykh Infekts., 2015, no. 4, pp. 58–64. https://doi.org/10.21055/0370-1069-2015-4-58-64

  4. Kutyrev, V.V., Eroshenko, G.A., Motin, V.L., Nosov, N.Y., Krasnov, J.M., Kukleva, L.M., Nikiforov, K.A., Al’khova, Z.V., Oglodin, E.G., and Guseva, N.P., Phylogeny and classification of Yersinia pestis through the lens of strains from the plague foci of Commonwealth of Independent States, Front. Microbiol., 2018, vol. 9, p. 1106. https://doi.org/10.3389/fmicb.2018.01106

    Article  PubMed Central  Google Scholar 

  5. Nikiforov, K.A., Morozov, O.A., Nosov, N.Yu., Kukleva, L.M., Yeroshenko, G.A., and Kutyrev, V.V., Population structure, taxonomy, and genetic features of Yersinia pestis strains of the Central Asian subspecies, Russ. J. Genet., 2018, vol. 54, no. 10, pp. 1142–1151. https://doi.org/10.1134/S1022795418100101

    Article  CAS  Google Scholar 

  6. Cui, Y., Yu, C., Yan, Y., Li, D., Li, Y., Jombart, T., Weinert, L.A., Wang, Z., Guo, Z., Xu, L., Zhang, Y., Zheng, H., Qin, N., Xiao, X., Wu, M., Wang, X., Zhou, D., Qi, Z., Du, Z., Wu, H., Yang, X., Cao, H., Wang, H., Wang, J., Yao, S., Rakin, A., Li, Y., Falush, D., Balloux, F., Achtman, M., Song, Y., Wang, J., and Yang, R., Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 2, pp. 577–582. https://doi.org/10.1073/pnas.1205750110

    Article  Google Scholar 

  7. Platonov, M.E., Evseeva, V.V., Dentovskaya, S.V., and Anisimov, A.P., Molecular typing of Yersinia pestis, Mol. Genet., Microbiol. Virol., 2013, vol. 28, no. 2, pp. 41–51.

    Article  Google Scholar 

  8. Zhang, Y., Luo, T., Yang, C, Yue, X., Guo, R., Wang, X., Buren, M., Song, Y., Yang, R., Cao, H., Cui, Y., and Dai, X., Phenotypic and molecular genetic characteristics of Yersinia pestis at an emerging natural plague focus, Junggar Basin, China, Am. J. Trop. Med. Hyg., 2018, vol. 98, no. 1, pp. 231–237. https://doi.org/10.4269/ajtmh.17-0195

    Article  Google Scholar 

  9. Wang, P., Shi, L., Zhang, F., Guo, Y., Zhang, Z., Tan, H., Cui, Z., Ding, Y., Liang, Y., Liang, Y., Yu, D., Xu, J., Li, W., and Song, Z., Ten years of surveillance of the Yulong plague focus in China and the molecular typing and source tracing of the isolates, PLoS Neglected Trop. Dis., 2018, vol. 12, no. 3, p. e0006352. https://doi.org/10.1371/journal.pntd.0006352

    Article  Google Scholar 

  10. Nour El-Din, H.T., Yassin, A.S., Ragab, Y.M., and Hashem, A.M., Phenotype-genotype characterization and antibiotic-resistance correlations among colonizing and infectious methicillin-resistant Staphylococcus aureus recovered from intensive care units, Infect. Drug Resist., 2021, vol. 14, pp. 1557–1571. https://doi.org/10.2147/IDR.S296000

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jolley, K.A. and Maiden, M.C., Using multilocus sequence typing to study bacterial variation: Prospects in the genomic era, Future Microbiol., 2014, vol. 9, no. 5, pp. 623–630. https://doi.org/10.2217/fmb.14.24

    Article  CAS  PubMed  Google Scholar 

  12. Grissa, I., Vergnaud, G., and Pourcel, C., Clustered regularly interspaced short palindromic repeats (CRIS-PRs) for the genotyping of bacterial pathogens, in Molecular Epidemiology of Microorganisms, Caugant, D., Ed., Methods in Molecular Biology, vol 551, Totowa, NJ: Humana. https://doi.org/10.1007/978-1-60327-999-4_9

  13. Spyrou, M.A., Keller, M., Tukhbatova, R.I., Scheib, C.L., Nelson, E.A., Andrades Valtueña, A., Neumann, G.U., Walker, D., Alterauge, A., Carty, N., Cessford, C., Fetz, H., Gourvennec, M., Hartle, R., Henderson, M., von Heyking, K., Inskip, S.A., Kacki, S., Key, F.M., Knox, E.L., Later, C., Maheshwari-Aplin, P., Peters, J., Robb, J.E., Schreiber, J., Kivisild, T., Castex, D., Lösch, S., Harbeck, M., Herbig, A., Bos, K.I., and Krause, J., Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes, Nat. Commun., 2019, vol. 10, no. 1, p. 4470. https://doi.org/10.1038/s41467-019-12154-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, F., Ye, J., Liu, W., Chio, C., Wang, W., and Qin, W., Knockout of a highly GC-rich gene in Burkholderia pyrrocinia by recombineering with freeze-thawing transformation, Mol. Plant Pathol., 2021, vol. 22, no. 7, pp. 843–857. https://doi.org/10.1111/mpp.13058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang, S., Yuan, Z.J., Zhu, Y.H., Chen, X., and Wang, W., lncRNA PVT1 promotes cetuximab resistance of head and neck squamous cell carcinoma cells by inhibiting miR-124-3p, Head Neck, 2021, vol. 43, no. 9, pp. 2712–2723. https://doi.org/10.1002/hed.26742

    Article  PubMed  Google Scholar 

  16. Mortazavipour, M.M., Shahbazi, S., and Mahdian, R., Detection of paternal IVS-II-1 (G>A) (HBB: c.315+1G>A) mutation in cell-free fetal DNA using COLD-PCR assay, Hemoglobin, 2020, vol. 44, no. 3, pp. 168–173. https://doi.org/10.1080/03630269.2020.1768864

    Article  CAS  PubMed  Google Scholar 

  17. Kane, S.R., Shah, S.R., and Alfaro, T.M., Development of a rapid viability polymerase chain reaction method for detection of Yersinia pestis, J. Microbiol. Methods, 2019, vol. 162, pp. 21–27. https://doi.org/10.1016/j.mimet.2019.05.005

    Article  CAS  PubMed Central  Google Scholar 

  18. Siggillino, A., Ulivi, P., Pasini, L., Reda, M.S., Chiadini, E., Tofanetti, F.R., Baglivo, S., Metro, G., Crinó, L., Delmonte, A., Minotti, V., Roila, F., and Ludovini, V., Detection of EGFR mutations in plasma cell-free tumor DNA of TKI-treated advanced-NSCLC patients by three methodologies: Scorpion-ARMS, PNAClamp, and Digital PCR, Diagnostics (Basel), 2020, vol. 10, no. 12, p. 1062. https://doi.org/10.3390/diagnostics10121062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schneider, R., Lamien-Meda, A., Auer, H., Wiedermann-Schmidt, U., Chiodini, P.L., and Walochnik, J., Validation of a novel FRET real-time PCR assay for simultaneous quantitative detection and discrimination of human Plasmodium parasites, PLoS One, 2021, vol. 16, no. 6, p. e0252887. https://doi.org/10.1371/journal.pone.0252887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sherrill-Mix, S., Hwang, Y., Roche, A.M., Glascock, A., Weiss, S.R., Li, Y., Haddad, L., Deraska, P., Monahan, C., Kromer, A., Graham-Wooten, J., Taylor, L.J., Abella, B.S., Ganguly, A., Collman, R.G., Van Duyne, G.D., and Bushman, F.D., Detection of SARS-CoV-2 RNA using RT-LAMP and molecular beacons, Genome Biol., 2021, vol. 22, no. 1, p. 169. https://doi.org/10.1186/s13059-021-02387-y

    Article  CAS  PubMed Central  Google Scholar 

  21. Nikiforov, K.A., Kukleva, L.M., Sitmbetov, D.A., Osina, N.A., Eroshenko, G.A., and Kutyrev, V.V., Construction of the reagent panel “GenPest-subspecies/Altai-RGF,” Probl. Osobo Opasnykh Infekts., 2021, no. 4, pp. 90–95. https://doi.org/10.21055/0370-1069-2021-4-90-95

  22. Thomas, M.C., Janzen, T.W., Huscyzynsky, G., Mathews, A., and Amoako, K.K., Development of a novel multiplexed qPCR and Pyrosequencing method for the detection of human pathogenic yersiniae, Int. J. Food. Microbiol., 2017, vol. 257, pp. 247–253. https://doi.org/10.1016/j.ijfoodmicro.2017.06.019

    Article  CAS  Google Scholar 

  23. Newton, C.R., Graham, A., Heptinstall, L.E., Powell, S.J., Summers, C., Kalsheker, N., Smith, J.C., and Markham, A.F., Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS), Nucleic Acids Res., 1989, vol. 17, no. 7, pp. 2503–2516. https://doi.org/10.1093/nar/17.7.2503

    Article  CAS  PubMed Central  Google Scholar 

  24. Cai, L., Kong, F., Jelfs, P., Gilbert, G.L., and Sintchenko, V., Rolling circle amplification and multiplex allele-specific PCR for rapid de-tection of katG and inhA gene mutations in Mycobacterium tuberculosis, Int. J. Med. Microbiol., 2009, vol. 299, no. 8, pp. 574–581. https://doi.org/10.1016/j.ijmm.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  25. Vogler, A.J., Driebe, E.M., Lee, J., Auerbach, R.K., Allender, C.J., Stanley, M., Kubota, K., Andersen, G.L., Radnedge, L., Worsham, P.L., Keim, P., and Wagner, D.M., Assays for the rapid and specific identification of North American Yersinia pestis and the common laboratory strain CO92, Biotechniques, 2008, vol. 44, no. 2, pp. 203–204, 207. https://doi.org/10.2144/000112815

    Article  Google Scholar 

  26. Sano, T., Smith, C.L., and Cantor, C.R., Immuno-PCR: Very sensitive antigen detection by means of specific antibody-DNA conjugates, Science, 1992, vol. 258, no. 5079, pp. 120–122. https://doi.org/10.1126/science.1439758

    Article  CAS  PubMed  Google Scholar 

  27. Jayathilake, C. and Nemoto, N., cDNA Display-mediated immuno-PCR (cD-IPCR): An ultrasensitive immunoassay for biomolecular detection, Methods Mol. Biol., 2021, vol. 2261, pp. 307–321. https://doi.org/10.1007/978-1-0716-1186-9_19

    Article  CAS  Google Scholar 

  28. Malou, N., Tran, T.N., Nappez, C., Signoli, M., Le Forestier, C., Castex, D., Drancourt, M., and Raoult, D., Immuno-PCR—A new tool for paleomicrobiology: The plague paradigm, PLoS One, 2012, vol. 7, no. 2, p. e31744. https://doi.org/10.1371/journal.pone.0031744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adessi, C., Matton, G., Ayala, G., Turcatti, G., Mermod, J.J., Mayer, P., and Kawashima, E., Solid phase DNA amplification: Characterisation of primer attachment and amplification mechanisms, Nucleic Acids Res., 2000, vol. 28, no. 20, p. E87. https://doi.org/10.1093/nar/28.20.e87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., and Hase, T., Loop-mediated isothermal amplification of DNA, Nucleic Acids Res., 2000, vol. 28, no. 12, p. E63. https://doi.org/10.1093/nar/28.12.e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh, R., Pal, V., Tripathi, N.K., and Goel, A.K., Development of a pair of real-time loop mediated isothermal amplification assays for detection of Yersinia pestis, the causative agent of plague, Mol. Cell Probes, 2020, vol. 54, p. 101670. https://doi.org/10.1016/j.mcp.2020.101670

    Article  CAS  PubMed  Google Scholar 

  32. Jin, J., Duan, L., Fu, J., Chai, F., Zhou, Q., Wang, Y., Shao, X., Wang, L., Yan, M., Su, X., Zhang, Y., Pan, J., and Chen, J., A real-time LAMP-based dual-sample microfluidic chip for rapid and simultaneous detection of multiple waterborne pathogenic bacteria from coastal waters, Anal. Methods, 2021, vol. 13, no. 24, pp. 2710–2721. https://doi.org/10.1039/d1ay00492a

    Article  CAS  Google Scholar 

  33. Liu, W., Dong, D., Yang, Z., Zou, D., Chen, Z., Yuan, J., and Huang, L., Polymerase Spiral Reaction (PSR): A novel isothermal nucleic acid amplification method, Sci. Rep., 2015, vol. 5, p. 12723. https://doi.org/10.1038/srep12723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mayboroda, O., Gonzalez Benito, A., Sabaté del Rio, J., Svobodova, M., Julich, S., Tomaso, H., O’Sullivan, C.K., and Katakis, I., Isothermal solid-phase amplification system for detection of Yersinia pestis, Anal. Bioanal Chem., 2016, vol. 408, no. 3, pp. 671–676. https://doi.org/10.1007/s00216-015-9177-1

    Article  CAS  PubMed  Google Scholar 

  35. Shi, L., Yang, G., Zhang, Z., Xia, L., Liang, Y., Tan, H., He, J., Xu, J., Song, Z., Li, W., and Wang, P., Reemergence of human plague in Yunnan, China in 2016, PLoS One, 2018, vol. 13, no. 6, p. e0198067. https://doi.org/10.1371/journal.pone.0198067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zasada, A.A., Zacharczuk, K., Formińska, K., Wiatrzyk, A., Ziółkowski, R., and Malinowska, E., Isothermal DNA amplification combined with lateral flow dipsticks for detection of biothreat agents, Anal. Biochem., 2018, vol. 560, pp. 60–66. https://doi.org/10.1016/j.ab.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  37. Kortli, S., Jauset-Rubio, M., Tomaso, H., Abbas, M.N., Bashammakh, A.S., El-Shahawi, M.S., Alyoubi, A.O., Ben-Ali, M., and O’Sullivan, C.K., Yersinia pestis detection using biotinylated dNTPs for signal enhancement in lateral flow assays, Anal. Chim. Acta, 2020, vol.1112, pp. 54–61. https://doi.org/10.1016/j.aca.2020.03.059

    Article  CAS  PubMed  Google Scholar 

  38. Müller, K., Daßen, S., Holowachuk, S., Zwirglmaier, K., Stehr, J., Buersgens, F., Ullerich, L., and Stoecker, K., Pulse-controlled amplification—A new powerful tool for on-site diagnostics under resource limited conditions, PLoS Neglected Trop. Dis., 2021, vol. 15, no. 1, p. e0009114. https://doi.org/10.1371/journal.pntd.0009114

    Article  Google Scholar 

  39. Cunningham, C.H., Hennelly, C.M., Lin, J.T., Uba-lee, R., Boyce, R.M., Mulogo, E.M., Hathaway, N., Thwai, K.L., Phanzu, F., Kalonji, A., Mwandagalirwa, K., Tshefu, A., Juliano, J.J., and Parr, J.B., A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, species differentiation, and drug-resistance genotyping, EBioMedicine, 2021, vol. 68, p. 103415. https://doi.org/10.1016/j.ebiom.2021.103415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schermer, B., Fabretti, F., Damagnez, M., Di Cristanziano, V., Heger, E., Arjune, S., Tanner, N.A., Imhof, T., Koch, M., Ladha, A., Joung, J., Gootenberg, J.S., Abudayyeh, O.O., Burst, V., Zhang, F., Klein, F., Benzing, T., and Müller, R.U., Rapid SARS-CoV-2 testing in primary material based on a novel multiplex RT-LAMP assay, PLoS One, 2020, vol. 15, no. 11, p. e0238612. https://doi.org/10.1371/journal.pone.0238612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Savvateeva, E.N., Dementieva, E.I., Tsybulskaya, M.V., Osipova, T.V., Ryabykh, T.P., Turygin, A.Yu., Yurasov, R.A., Zasedatelev, A.S., and Rubina, A.Yu., Biological microchip for simultaneous quantitative immunoassay of tumor markers in human serum, Bull. Exp. Biol. Med., 2009, no. 6, vol. 147, pp. 737−741.

  42. Jiang, D., Tian, Y., Zhang, Y., Lu, X., Xiao, D., and Zhou, C., One-step fast and label-free imaging array for multiplexed detection of trace avian influenza viruses, Anal. Chim. Acta, 2021, vol. 1171, p. 338645. https://doi.org/10.1016/j.aca.2021.338645

    Article  CAS  PubMed  Google Scholar 

  43. Srinivasan, V., Stedtfeld, R.D., Tourlousse, D.M., Baushke, S.W., Xin, Y., Miller, S.M., Pham, T., Rouillard, J.M., Gulari, E., Tiedje, J.M., and Hashsham, S.A., Diagnostic microarray for 14 water and foodborne pathogens using a flatbed scanner, J. Microbiol. Methods, 2017, vol. 139, pp. 15–21. https://doi.org/10.1016/j.mimet.2017.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nikiforov, K.A., Utkin, D.V., Makashova, M.A., Kukleva, L.M., Eroshenko, G.A., and Kutyrev, V.V., Construction of a multiplex PCR system with hybridization-fluorescent recording of results on a solid substrate for indication and identification of plague pathogen strains, Biotekhnologiya, 2020, vol. 36, no. 3, pp. 46–56. https://doi.org/10.21519/0234-2758-2020-36-3-46-56

  45. Famulok, M., Allosteric aptamers and aptazymes as probes for screening approaches, Curr. Opin. Mol. Ther., 2005, vol. 7, no. 2, pp. 137‒143.

    CAS  PubMed  Google Scholar 

  46. Ellington, A.D. and Szostak, J.W., In vitro selection of RNA molecules that bind specific ligands, Nature, 1990, vol. 346, no. 6287, pp. 818‒822. https://doi.org/10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  47. Jeddi, I. and Saiz, L., Computational design of single-stranded DNA hairpin aptamers immobilized on a biosensor substrate, Sci. Rep., 2021, vol. 11, no. 1, p 10984. https://doi.org/10.1038/s41598-021-88796-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duanghathaipornsuk, S., Reaver, N.G.F., Cameron, B.D., and Kim, D.S., Adsorption kinetics of glycated hemoglobin on aptamer microarrays with antifouling surface modification, Langmuir, 2021, vol. 37, no. 15, pp. 4647–4657. https://doi.org/10.1021/acs.langmuir.1c00446

    Article  CAS  PubMed  Google Scholar 

  49. Jalali, T., Salehi-Vaziri, M., Pouriayevali, M.H., and Gargari, S.L.M., Aptamer based diagnosis of Crimean-Congo hemorrhagic fever from clinical specimens, Sci. Rep., 2021, vol. 11, no. 1, p. 12639. https://doi.org/10.1038/s41598-021-91826-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qlark, L.C., Jr., Monitor and control of blood and tissue oxygen tensions, ASAIO J., 1956, vol. 2, no. 1, pp. 41–48.

    Google Scholar 

  51. Hong, C.A., Park, J.C., Na, H., Jeon, H., and Nam, Y.S., Short DNA-catalyzed formation of quantum dot-DNA hydrogel for enzyme-free femtomolar specific DNA assay, Biosens. Bioelectron., 2021, vol. 182, p. 113110. https://doi.org/10.1016/j.bios.2021.113110

    Article  CAS  PubMed  Google Scholar 

  52. Born, F., Braun, P., Scholz, H.C., and Grass, G., Specific detection of Yersinia pestis based on receptor binding proteins of phages, Pathogens, 2020, vol. 9, no. 8, p. 611. https://doi.org/10.3390/pathogens9080611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, X., Wang, L., Zhao, J., Zhu, Y., Yang, J., and Yang, F., Enhanced binding efficiency of microcantilever biosensor for the detection of Yersinia, Sensors (Basel), 2019, vol. 19, no. 15, p. 3326. https://doi.org/10.3390/s19153326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Seeman, N.C., Nucleic acid junctions and lattices, J. Theor. Biol., 1982, vol. 99, no. 2, pp. 237–247. https://doi.org/10.1016/0022-5193(82)90002-9

    Article  CAS  PubMed  Google Scholar 

  55. Rothemund, P.W., Folding DNA to create nanoscale shapes and patterns, Nature, 2006, vol. 440, no. 7082, pp. 297–302. https://doi.org/10.1038/nature04586

    Article  CAS  PubMed  Google Scholar 

  56. Raveendran, M., Lee, A.J., Sharma, R., Wälti, C., and Actis, P., Rational design of DNA nanostructures for single molecule biosensing, Nat. Commun., 2020, vol. 11, no. 1, p. 4384. https://doi.org/10.1038/s41467-020-18132-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ochmann, S.E., Vietz, C., Trofymchuk, K., Acuna, G.P., Lalkens, B., and Tinnefeld, P., Optical nanoantenna for single molecule-based detection of Zika virus nucleic acids without molecular multiplication, Anal. Chem., 2017, vol. 89, no. 23, pp. 13000–13007. https://doi.org/10.1021/acs.analchem.7b04082

    Article  CAS  PubMed  Google Scholar 

  58. Yang, B., Zhang, Z., Yang, C., Wang, Y., Orr, M.C., Hongbin, W., and Zhang, A.B., Identification of species by combining molecular and morphological data using convolutional neural networks, Syst. Biol., 2022, vol. 71, no. 3, pp. 690–705. https://doi.org/10.1093/sysbio/syab076

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Nikiforov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforov, K.A. Modern Molecular Genetic Methods and Prospects for Their Use for Indication and Identification of Yersinia pestis Strains. Biochem. Moscow Suppl. Ser. B 17, 6–16 (2023). https://doi.org/10.1134/S1990750823600140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750823600140

Keywords:

Navigation