Skip to main content
Log in

Electron acceleration by two identical crossed laser pulses in a plasma channel

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, an analytical formalism is developed for electron acceleration using two crossed and identical laser pulses in a plasma channel. The net electron energy is increased and the electron diffraction is decreased through the utilization of radially polarized (RP) crossed-focused laser pulses. The study investigates the impact of various parameters, such as laser amplitude, ion density, initial kinetic energy, injection angle, laser pulse duration, and spot size on electron energy gain within a preformed plasma ion channel. The presence of space-charge field confines the dynamic of electrons along the longitudinal direction. Consequently, the transverse component of the laser pulse vanishes along the propagation axis, whereas the longitudinal component provides a longitudinal force. This configuration leads to the observation of gain in energy of electrons in GeV at a laser intensity \(\sim {10}^{19}{\text{W}}/{{\text{cm}}}^{2}\) where the ion density is \(\sim {10}^{23}{{\text{m}}}^{-3}\) in plasma channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Data are available on request from the authors: The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Code may be available on request from the authors upon reasonable request.

References

  1. J.B. Rosenzweig, D.B. Cline, B. Cole, H. Figueroa, W. Gai, R. Konecny, J. Norem, P. Schoessow, J. Simpson, “Experimental observation of plasma wake-field acceleration” Phys. Rev. Lett. 61, 98 (1988). https://doi.org/10.1103/PhysRevLett.61.98

    Article  ADS  CAS  Google Scholar 

  2. T. Katsouleas, “Physical mechanisms in the plasma wakefield accelerator” Phys. Rev. A 33, 2056 (1986). https://doi.org/10.1103/PhysRevA.33.2056

    Article  CAS  Google Scholar 

  3. A. Caldwell, K. Lotov, A. Pukhov, F. Simon, Proton-driven plasma-wakefield acceleration. Nat. Phys. 5, 363–367 (2009). https://doi.org/10.1038/nphys1248

    Article  CAS  Google Scholar 

  4. C.E. Clayton, C. Joshi, C. Darrow, D. Umstadter, F.F. Chen, Experimental Study of the Plasma Beat Wave Accelerator. IEEE Trans. Nucl. Sci.Nucl. Sci. 32, 3551–3553 (1985). https://doi.org/10.1109/TNS.1985.4334425

    Article  ADS  Google Scholar 

  5. F. Amiranoff, J. Ardonceau, M. Bercher, D. Bernard, B. Cros, A. Debraine, J.M. Dieulot, J. Fusellier, F. Jacquet, J.M. Joly, M. Juillard, G. Matthieussent, P. Matricon, P. Miné, B. Montès, P. Mora, R. Morano, J. Morillo, F. Moulin, P. Poilleux, A.E. Specka, C. Stenz, The plasma beat-wave acceleration experiment at Ecole Polytechnique. Nucl. Instr. and Meth. A 363, 497–510 (1995). https://doi.org/10.1016/0168-9002(95)00408-4

    Article  ADS  CAS  Google Scholar 

  6. C. Joshi, The plasma beat wave accelerator-I experiments. AIP Conf. Proc. 91, 28–42 (1982). https://doi.org/10.1063/1.33803

    Article  ADS  CAS  Google Scholar 

  7. K. Gopal and A.K. Singh, “Study of Laser Wakefield Acceleration by using particle-in-cell Simulation” International Journal of Pure and Applied Physics 13 (2017), 325–334. https://www.ripublication.com/ijpap17/ijpapv13n3_07.pdf

  8. F. Amiranoff, S. Baton, D. Bernard, B. Cros, D. Descamps, F. Dorchies, F. Jacquet, V. Malka, J.R. Marquès, G. Matthieussent, P. Miné, A. Modena, P. Mora, J. Morillo, Z. Najmudin, “Observation of Laser Wakefield Acceleration of Electrons” Phys. Rev. Lett. 81, 995 (1998). https://doi.org/10.1103/PhysRevLett.81.995

    Article  ADS  CAS  Google Scholar 

  9. L.M. Gorbunov, S. Yu. Kalmykov, and P. Mora, “Laser wakefield acceleration by petawatt ultrashort laser pulses” Physics of Plasmas 12 (2005), 033101. https://doi.org/10.1063/1.1852469

  10. A. Ting, C.I. Moore, K. Krushelnick, C. Manka, E. Esarey, P. Sprangle, R. Hubbard, H. R. Burris, R. Fischer, and M. Baine, “Plasma wakefield generation and electron acceleration in a self-modulated laser wakefield accelerator experiment” Physics of Plasmas 4 (1997), 1889. https://doi.org/10.1063/1.872332

  11. Z. Najmudin, K. Krushelnick, E.L. Clark, S.P.D. Mangles, B. Walton, A.E. Dangor, S. Fritzier, V. Malka, E. Lefebvre, D. Gordon, F.S. Tsung, C. Joshi, Self-modulated wakefield and forced laser wakefield acceleration of electrons. Phys. Plasmas 10, 2071–2077 (2003). https://doi.org/10.1063/1.1564083

    Article  ADS  CAS  Google Scholar 

  12. C. Kamperidis, C. Bellei, N. Bourgeois, M.C. Kaluza, K. Krushelnick, S.P.D. Mangles, J.R. Marques, S.R. Nagel, Z. Najmudin, Self-modulated wakefield acceleration in a centimetre self-guiding channel. J. Plasma Phys. 78, 433–440 (2012). https://doi.org/10.1017/S0022377812000293

    Article  ADS  CAS  Google Scholar 

  13. H. Mehdian, A. Hasanbeigi, S. Jafari, “Free-electron laser harmonic generation in an electromagnetic-wave wiggler and ion channel guiding” Phys. Plasmas 17, 023112 (2010). https://doi.org/10.1063/1.3313356

    Article  ADS  CAS  Google Scholar 

  14. U.H. Hwang, H. Mehdian, J.E. Willett, Y.M. Aktas, “Dispersion relation and growth in a free-electron laser with planar wiggler and in-channel guiding” Phys. Plasmas 9, 1010 (2002). https://doi.org/10.1063/1.1449891

    Article  ADS  CAS  Google Scholar 

  15. A.V. Arefiev, V.N. Khudik, M. Schollmeier, “Enhancement of laser-driven electron acceleration in an ion channel” Phys. Plasmas 21, 033104 (2014). https://doi.org/10.1063/1.4867491

    Article  ADS  CAS  Google Scholar 

  16. M. Kaur, D.N. Gupta, Electron acceleration by a radially polarised laser pulse in an ion channel. IEEE Trans. Plasma Sci. 45, 2841–2847 (2017). https://doi.org/10.1109/TPS.2017.2740344

    Article  ADS  CAS  Google Scholar 

  17. R. Jeet, H.S. Ghotra, A. Kumar, N. Kant, “Electron acceleration by a tightly focused laser pulse in an ion channel” Eur. Phys. J. D. 75, 268 (2021). https://doi.org/10.1140/epjd/s10053-021-00280-8

    Article  ADS  CAS  Google Scholar 

  18. N. Kumar, V.K. Tripathi, Effect of betatron resonance on plasma wave acceleration of electrons in an ion channel. Europhys. Lett.. Lett. 75, 260–266 (2006). https://doi.org/10.1209/epl/i2006-10110-1

    Article  ADS  CAS  Google Scholar 

  19. M. Wen, Y.I. Salamin, C.H. Keitel, “Electron acceleration by a radially-polarized laser pulse in a plasma micro-channel” Opt. Express 27, 557 (2019). https://doi.org/10.1364/OE.27.000557

    Article  ADS  CAS  Google Scholar 

  20. D.N. Gupta, M. Kaur, K. Gopal, H. Suk, Space charge field assisted electron acceleration by plasma wave in magnetic plasma channel. IEEE Trans. Plasma Sci. 44, 2867–2873 (2016). https://doi.org/10.1109/TPS.2016.2615649

    Article  ADS  CAS  Google Scholar 

  21. A. Kargarian, K. Hajisharifi, Self-magnetic field effects on laser driven wakefield electron acceleration in axially magnetized ion channel. Laser and Particle Beam 38, 222–228 (2020). https://doi.org/10.1017/S0263034620000324

    Article  ADS  CAS  Google Scholar 

  22. Y.I. Salamin, C.H. Keitel, Sub cycle high electron acceleration by crossed laser beams. Appl. Phys. Lett. 77, 1082–1084 (2000). https://doi.org/10.1063/1.1289649

    Article  ADS  CAS  Google Scholar 

  23. E. Esarey, P. Sprangle, J. Krall, “Laser acceleration of electrons in vacuum” Phys. Rev. E 52, 5443 (1995). https://doi.org/10.1103/PhysRevE.52.5443

    Article  CAS  Google Scholar 

  24. Y.I. Salamin, G.R. Mocken, C.H. Keitel, “Relativistic electron dynamics in intense crossed laser beams: Acceleration and Compton harmonics” Phys. Rev. E 67, 016501 (2003). https://doi.org/10.1103/PhysRevE.67.016501

    Article  CAS  Google Scholar 

  25. Y.I. Salamin, “Accurate fields of a radially polarized Gaussian laser beam” New J. Phys. 8 (2006), 133; 10 (2008), 069801. https://doi.org/10.1088/1367-2630/10/6/069801

  26. Y.I. Salamin, “Acceleration in vacuum of bare nuclei by tightly focused radially polarized laser light” Opt. Lett. 32(2007), 90; 33 (2008), 1662. https://doi.org/10.1364/OL.32.003462

  27. R. Zhang, L.H. Cheng, J.K. Xue, “Laser-driven electron acceleration in an inhomogeneous plasma channel” Phys. Plasmas 22, 123109 (2015). https://doi.org/10.1063/1.4937367

    Article  ADS  CAS  Google Scholar 

  28. H.S. Ghotra, “Cosh Gaussian laser pulse influenced electron acceleration in an ion channel” Laser Phys. Lett. 19, 096002 (2022). https://doi.org/10.1088/1612-202X/ac8282

    Article  Google Scholar 

  29. N.A. Bobrova, P.V. Sasorov, C. Benedetti, S.S. Bulanov, C.G.R. Geddes, C.B. Schroeder, E. Esarey, W.P. Leemans, “Laser-heater assisted plasma channel formation in capillary discharge waveguides” Phys. Plasmas 20, 020703 (2013). https://doi.org/10.1063/1.4793447

    Article  ADS  CAS  Google Scholar 

  30. Y.I. Salamin, “Direct particle acceleration by two identical crossed radially polarized laser beams” Phys. Rev. A 82, 013823 (2010). https://doi.org/10.1103/PhysRevA.82.013823

    Article  CAS  Google Scholar 

  31. S.V. Bulanov, F.F. Kamenets, F. Pegoraro, A.M. Pukhov, “Short, relativistically strong laser pulse in a narrow channel” Phys. Lett. A 195, 84 (1994). https://doi.org/10.1016/0375-9601(94)90431-6

    Article  ADS  Google Scholar 

  32. M. Vranic, R.A. Fonseca, L.O. Silva, “Extremely intense laser-based electron acceleration in a plasma channel” Plasma Phys. Control Fusion 60, 034002 (2018). https://doi.org/10.1088/1361-6587/aaa36c

    Article  CAS  Google Scholar 

  33. K. Krushelnick, A. Ting, C.I. Moore, H.R. Burris, E. Esarey, P. Sprangle, M. Baine, “Plasma Channel Formation and Guiding during High Intensity Short Pulse Laser Plasma Experiments” Phys. Rev. Lett. 78, 21 (1997). https://doi.org/10.1103/PhysRevLett.78.4047

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors Mr. Ram Jeet is grateful to Prof. V.K. Tripathi (IIT Delhi) for valuable suggestions and discussions and also thankful to Prof. K. N. Uttam (Department of Physics, University of Allahabad, Prayagraj) for discussion on laser.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equally contributed to this work.

Corresponding author

Correspondence to Harjit Singh Ghotra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeet, R., Kumar, A., Kant, N. et al. Electron acceleration by two identical crossed laser pulses in a plasma channel. Appl. Phys. B 130, 25 (2024). https://doi.org/10.1007/s00340-023-08160-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08160-2

Navigation