Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-05T17:14:48.225Z Has data issue: false hasContentIssue false

Rapid generation of time-optimal rendezvous trajectory based on convex optimisation and DNN

Published online by Cambridge University Press:  09 January 2024

R.D. Zhang
Affiliation:
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China
W.W. Cai*
Affiliation:
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China
L.P. Yang
Affiliation:
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China
*
Corresponding author: W.W. Cai; Email: tsaiweiwei@hotmail.com

Abstract

The minimum flight time of spacecraft rendezvous is one of the fundamental indexes for mission design. This paper proposes a rapid trajectory planning method based on convex optimisation and deep neural network (DNN). The time-optimal trajectory planning problem is reconstructed into a double-layer optimisation framework, with the inner being a convex optimisation problem and the outer being a root-finding problem. The thrust properties corresponding to time-optimal control are analysed theoretically. A DNN-based rapid planning method (DNN-RPM) is put forward to improve computational efficiency, in which the trained DNN provides a high-quality initial guess for Newton’s method. The DNN-RPM is extended to search for the optimal entering angle of natural-motion circumnavigation orbit injection problem and the minimum reconfiguration time of spacecraft swarm. Numerical simulations show that the proposed method can improve the computational efficiency while ensuring the calculation accuracy.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhuang, Y. and Huang, H. Time-optimal trajectory planning for underactuated spacecraft using a hybrid particle swarm optimization algorithm, Acta Astronaut, 2014, 94, (2), pp 690698.CrossRefGoogle Scholar
Leomanni, M., Quartullo, R., Bianchini, G., Garulli, A. and Giannitrapani, A. Variable-horizon guidance for autonomous rendezvous and docking to a tumbling target, J. Guid. Control. Dyn., 2022, 45, (5), pp 846858. https://doi.org/10.2514/1.G006340 CrossRefGoogle Scholar
Jewison, C. and Miller, D.W. Probabilistic trajectory optimization under uncertain path constraints for close proximity operations, J. Guid. Control Dyn., 2018, 41, (9), pp 18431858. https://doi.org/10.2514/1.G003152 CrossRefGoogle Scholar
Boge, T. and Benninghoff, H. Rendezvous simulation for on-orbit servicing missions using advanced robotic technology, IFAC Proc., 2013, 46, (19), pp 155160. https://doi.org/10.3182/20130902-5-DE-2040.00093 CrossRefGoogle Scholar
Bandyopadhyay, S., Foust, R., Subramanian, G.P. and Hadaegh, F.Y. Review of formation flying and constellation missions using nanosatellites, J. Spacecr. Rockets, 2016, 53, (3), pp 567579. https://doi.org/10.2514/1.A33291 CrossRefGoogle Scholar
Scala, F., Gaias, G., Colombo, C. and Martín, M. Design of optimal low-thrust manoeuvres for remote sensing multi-satellite formation flying in low Earth orbit, Adv. Sp. Res., 2021, 68, (11), pp 43594378. https://doi.org/10.1016/j.asr.2021.09.030 CrossRefGoogle Scholar
Betts, J.T. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Philadelphia, USA, 2010.CrossRefGoogle Scholar
Morgan, D., Chung, S. and Hadaegh, F.Y. Model predictive control of swarms of spacecraft using sequential convex programming, J. Guid. Control Dyn., 2014, 37, (6), pp 17251740. https://doi.org/10.2514/1.G000218 CrossRefGoogle Scholar
Chai, R. A review of optimization techniques in spacecraft flight trajectory design, Prog. Aerosp. Sci., 2019, 109, p 100543. https://doi.org/10.1016/j.paerosci.2019.05.003 CrossRefGoogle Scholar
Wu, B., Wang, D., Poh, E. and Xu, G. Nonlinear optimization of low-thrust trajectory for satellite formation: Legendre pseudospectral approach, J. Guid. Control. Dyn., 2009, 32, (4), pp 13711381. https://doi.org/10.2514/1.37675 CrossRefGoogle Scholar
Li, J. Fuel-optimal low-thrust formation reconfiguration via Radau pseudospectral method, Adv. Sp. Res., 2016, 58, (1), pp 116. https://doi.org/10.1016/j.asr.2016.04.005 CrossRefGoogle Scholar
Mauro, G., Spiller, D., Bevilacqua, R. and Curti, F. Optimal continuous maneuvers for satellite formation reconfiguration in J2-perturbed orbits, Space Flight Mechanics Meeting, 2018. https://doi.org/10.2514/6.2018-0216 CrossRefGoogle Scholar
Cheng, L., Wen, H. and Jin, D. Reconfiguration control of satellite formation using online quasi-linearization iteration and symplectic discretization, Aerosp. Sci. Technol., 2020, 107, p 106348. https://doi.org/10.1016/j.ast.2020.106348 CrossRefGoogle Scholar
Peng, H. and Jiang, X. Nonlinear receding horizon guidance for spacecraft formation reconfiguration on libration point orbits using a symplectic numerical method, ISA Trans., 2016, 60, pp 3852. https://doi.org/10.1016/j.isatra.2015.10.015 CrossRefGoogle ScholarPubMed
Kayama, Y., Howell, K.C., Bando, M. and Hokamoto, S. Low-thrust trajectory design with successive convex optimization for libration point orbits, J. Guid. Control. Dyn., 2022, 45, (4), pp 115. https://doi.org/10.2514/1.G005916 CrossRefGoogle Scholar
Xie, L., He, R., Zhang, H. and Tang, G. Oscillation phenomenon in trust-region-based sequential convex programming for the nonlinear trajectory planning problem, IEEE Trans. Aerosp. Electron. Syst., 2022, 58, (4), pp 33373352. https://doi.org/10.1109/TAES.2022.3153761 CrossRefGoogle Scholar
Morelli, A., Hofmann, C. and Topputo, F. Robust low-thrust trajectory optimization using convex programming and a homotopic approach, IEEE Trans. Aerosp. Electron. Syst., 2022, 58, (3), pp 21032116. https://doi.org/10.1109/TAES.2021.3128869 CrossRefGoogle Scholar
Han, H., Qiao, D., Chen, H. and Li, X. Rapid planning for aerocapture trajectory via convex optimization, Aerosp. Sci. Technol., 2019, 84, pp 763775. https://doi.org/10.1016/j.ast.2018.11.009 CrossRefGoogle Scholar
Grant, M. and Boyd, S. CVX: Matlab software for disciplined convex programming, 2014. http://cvxr.com/cvx Google Scholar
Yang, H., Bai, X. and Baoyin, H. Rapid generation of time-optimal trajectories for asteroid landing via convex optimization, J. Guid. Control. Dyn., 2017, 40, (3), pp 628641. https://doi.org/10.2514/1.G002170 CrossRefGoogle Scholar
Cheng, L., Li, H., Wang, Z. and Jiang, F. Fast solution continuation of time-optimal asteroid landing trajectories using deep neural networks, Acta Astronaut., 2020, 167, pp 6372.CrossRefGoogle Scholar
Viavattene, G. and Ceriotti, M. Artificial neural networks for multiple NEA rendezvous missions with continuous thrust, J. Spacecraft Rockets, 2021, 59, (2), pp 574586.CrossRefGoogle Scholar
Wang, J., Wu, Y., Liu, M., Yang, M. and Liang, H. A real-time trajectory optimization method for hypersonic vehicles based on a deep neural network, Aerospace, 2022, 9, (4), pp 188205.CrossRefGoogle Scholar
Dai, P., Feng, D., Feng, W., Cui, J. and Zhang, L. Entry trajectory optimization for hypersonic vehicles based on convex programming and neural network, Aerospace Sci. Technol., 2023, 137, p 108259.CrossRefGoogle Scholar
Blackmore, L., Açikmeşe, B. and Scharf, D. Minimum-landing-error powered-descent guidance for mars landing using convex optimization, J. Guid. Control. Dyn., 2010, 33, (4), pp 11611171. https://doi.org/10.2514/1.47202 CrossRefGoogle Scholar
Press, W., Teukolsky, S., Vetterling, M. and Flannery, B. Numerical Recipes: The Art of Scientific Computing, Cambridge, 2007, New York, USA.Google Scholar
Zhang, R., Cai, W., Yang, L. and Si, C. Online collision avoidance trajectory planning for spacecraft proximity operations with uncertain obstacle, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 2021, 236, (11), pp 22542270. https://doi.org/10.1177/09544100211056164 CrossRefGoogle Scholar
Lu, P., Lewis, A., Adams, R., DeVore, M.D. and Petersen, C.D. Finite-thrust natural-motion circumnavigation injection by convex optimization, J. Guid. Control. Dyn., 2022, 45, (3), pp 453467. https://doi.org/10.2514/1.G006123 CrossRefGoogle Scholar