Skip to main content

Advertisement

Log in

Unravelling the key steps impairing the metabolic state of Xanthomonas cells undergoing programmed cell death

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Programmed cell death (PCD) has been reported in Xanthomonas axonopodis pv. glycines (Xag) wild type earlier and was indirectly shown to be induced by metabolic stress; however, deciphering the key proteins regulating the metabolic stress remained unrevealed. In this study, transcriptomic and proteomic analyses were performed to investigate the prominent pathways, having a role in the induction of metabolic stress in Xag cells undergoing PCD. A comprehensive analysis of transcriptome and proteome data revealed the major involvement of metabolic pathways related to branched chain amino acid degradation, such as acyl-CoA dehydrogenase and energy-yielding, ubiquinol:cytochrome c oxidoreductase complex, in Xag cells undergoing PCD. Consequently, oxidative stress response genes showed major upregulation in Xag cells in PCD-inducing medium; however, no such upregulation was observed at the protein level, indicative of depleted protein levels under excessive stress conditions. Activation of stress response and DNA repair proteins was also observed in Xag cells grown in PCD-inducing medium, which is indicative of excessive cellular damage. Thus, the findings indicate that programmed cell death in Xag is an outcome of metabolic stress in nutrient condition not suitable for a plant pathogen like Xanthomonas, which is more acclimatised with altogether a different nutritional requirement predominantly having an enriched carbohydrate source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data will be made available from the corresponding author upon reasonable request

Abbreviations

Xag wt:

Xanthomonas axonopodis pv. glycines wild type

PCD:

Programmed cell death

ROS:

Reactive oxygen species

RNA-seq:

Ribonucleic acid sequencing

DEGs:

Differentially expressed genes

DAPs:

Differentially abundant proteins

LC-MS/MS:

Liquid chromatography-tandem mass spectrometry

SWATH-MS:

Sequential Window Acquisition of All Theoretical Mass Spectra

QC:

Quality control

NCBI:

National Center for Biotechnology Information

FDR:

False discovery rate

COG:

Clusters of orthologous groups

GO:

Gene ontology

BCAAs:

Branched chain amino acids

H2O2 :

Hydrogen peroxide

NADH:

Nicotinamide adenine dinucleotide (NAD) + hydrogen (H)

SOD:

Superoxide dismutase

GST:

Glutathione S-transferase

GSH:

Glutathione

References

  • Bayles KW (2014) Bacterial programmed cell death: making sense of a paradox. Nat Rev Microbiol 12(1):63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonell T, Gomes AV (2020) MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol 36:101607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardin SE, Borchert GM (2017) Viral microRNAs, host microRNAs regulating viruses, and bacterial microRNA-like RNAs. Methods Mol Biol 1617:39–56. https://doi.org/10.1007/978-1-4939-7046-9_3

    Article  CAS  PubMed  Google Scholar 

  • Chiang SM, Schellhorn HE (2012) Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophys 525(2):161–169

    Article  CAS  PubMed  Google Scholar 

  • Constantin EC, Cleenwerck I, Maes M, Baeyen S (2016) Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffen-bachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathol 65(5):792–806

    Article  CAS  Google Scholar 

  • Crowell AM, Wall MJ, Doucette AA (2013) Maximizing recovery of water-soluble proteins through acetone precipitation. Anal Chim Acta 796:48–54

    Article  CAS  PubMed  Google Scholar 

  • Dubbs JM, Mongkolsuk S (2012) Peroxide-sensing transcriptional regulators in bacteria. J Bacteriol 194(20):5495–5503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasnacht M, Polacek N (2021) Oxidative stress in bacteria and the central dogma of molecular biology. Front Mol Biosci 8:671037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fioravanti A, Giordano A, Dotta F, Pirtoli L (2022) Crosstalk between microrna and oxidative stress in physiology and pathology 2.0. Int J Mol Sci 23(12):6831

    Article  PubMed  PubMed Central  Google Scholar 

  • Flick K, Kaiser P (2012) Protein degradation and the stress response. Semin Cell Dev Biol 23(5):515–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F (2020) Iron-sulfur cluster biogenesis and iron homeostasis in cyanobacteria. Front Microbiol 11:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Gautam S, Sharma A (2002a) Rapid cell death in Xanthomonas campestris pv. glycines. J Gen Appl Microbiol 48:67–76. https://doi.org/10.2323/jgam.48.67

  • Gautam S, Sharma A (2002b) Involvement of caspase-3 like protein in rapid cell death of Xanthomonas. Mol Microbiol 44:393–401

    Article  CAS  PubMed  Google Scholar 

  • Giuffrè A, Borisov VB, Arese M, Sarti P, Forte E (2014) Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta 1837(7):1178–1187

    Article  PubMed  Google Scholar 

  • Heo YJ, Chung IY, Cho WJ, Lee BY, Kim JH, Choi KH et al (2010) The major catalase gene (katA) of Pseudomonas aeruginosa PA14 is under both positive and negative control of the global transactivator OxyR in response to hydrogen peroxide. J Bacteriol 192(2):381–390

    Article  CAS  Google Scholar 

  • Ikeda T, Shinagawa T, Ito T, Ohno Y, Kubo A, Nishi J et al (2020) Hypoosmotic stress induces flagellar biosynthesis and swimming motility in Escherichia albertii. Commun Biol 3(1):87

    Article  CAS  PubMed Central  Google Scholar 

  • Imlay JA (2006) Iron-sulphur clusters and the problem with oxygen. Mol Microbiol 59(4):1073–1082

    Article  PubMed  Google Scholar 

  • Koháryová M, Kolárová M (2008) Oxidative stress and thioredoxin system. Gen Physiol Biophys 27(2):71–84

    Google Scholar 

  • Kumar S, Trivedi PK (2018) Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci 9:751

    Article  PubMed  PubMed Central  Google Scholar 

  • Leung AK, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 40(2):205–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SZ, Hu YY, Zhao J, Zhao YB, Sun JD, Yang YF, Ji CC, Liu ZB, Cao WD, Qu Y, Liu WP (2014) MicroRNA-34a induces apoptosis in the human glioma cell line, A172, through enhanced ROS production and NOX2 expression. Biochem Biophys Res Commun 444(1):6–12

    Article  CAS  Google Scholar 

  • Limenitakis J, Oppenheim RD, Creek DJ, Foth BJ, Barett MP, Soldati-Favre D (2013) The 2-methylcitrate cycle is implicated in the detoxification of propionate in Toxoplasma gondii. Mol Microbiol 87(4):894–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W, de Sessions PF, Teoh GH, Mohamed AN, Zhu YO, Koh VH et al (2016) Transcriptional profiling of mycobacterium tuberculosis exposed to in vitro lysosomal stress. Infect Immun 84(9):2505–2523

    Article  CAS  PubMed Central  Google Scholar 

  • Nachin L, Nannmark U, Nyström T (2005) Differential roles of the universal stress proteins of Escherichia coli in oxidative stress resistance, adhesion, and motility. J Bacteriol 187(18):6265–6272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najmuldeen H, Alghamdi R, Alghofaili F, Yesilkaya H (2019) Functional assessment of microbial superoxide dismutase isozymes suggests a differential role for each isozyme. Free Radic Biol Med 134:215–228

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JV, Gomes CM (2012) Mechanism of superoxide and hydrogen peroxide generation by human electron-transfer flavoprotein and pathological variants. Free Radic Biol Med 53(1):12–19

    Article  CAS  PubMed  Google Scholar 

  • Sezonov G, Joseleau-Petit D, D'Ari R (2007) Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 189(23):8746–8749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AN, Sharma N (2020) Quantitative SWATH-based proteomic profiling for identification of mechanism-driven diagnostic biomarkers conferring in the progression of metastatic prostate cancer. Front Oncol 10:493

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith JL (2004) The physiological role of ferritin-like compounds in bacteria. Crit Rev Microbiol 30(3):173–185

    Article  CAS  PubMed  Google Scholar 

  • Tondo ML, Delprato ML, Kraiselburd I, Fernández Zenoff MV, Farías ME, Orellano EG (2016) KatG, the bifunctional catalase of Xanthomonas citri subsp. citri, responds to hydrogen peroxide and contributes to epiphytic survival on citrus leaves. PloS One 11(3):e0151657

    Article  PubMed  PubMed Central  Google Scholar 

  • Trumpower BL (1990) Cytochrome bc1 complexes of microorganisms. Microbiol Rev 54(2):101–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas-Blanco DA, Shell SS (2020) Regulation of mRNA stability during bacterial stress responses. Front Microbiol 11:2111

    Article  PubMed  PubMed Central  Google Scholar 

  • Venero ECS, Ricardi MM, Gomez-Lozano M, Molin S, Tribelli PM, López NI (2019) Oxidative stress under low oxygen conditions triggers hyperflagellation and motility in the Antarctic bacterium Pseudomonas extremaustralis. Extremophiles. 23(5):587–597

    Article  Google Scholar 

  • Wadhawan S, Gautam S, Sharma A (2010) Metabolic stress-induced programmed cell death in Xanthomonas. FEMS Microbiol Lett 312:176–183

    Article  PubMed  Google Scholar 

  • Wadhawan S, Gautam S, Sharma A (2014) Involvement of proline oxidase (PutA) in programmed cell death of Xanthomonas. PloS One 9(5):e96423

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeller T, Klug G (2006) Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 93(6):259–266

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Dai X (2019) Maintenance of translational elongation rate underlies the survival of Escherichia coli dur-ing oxidative stress. Nucleic Acids Res 47(14):7592–7604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The sole funding agency is the Government of India and no external source of fund or study sponsor is involved.

Author information

Authors and Affiliations

Authors

Contributions

JT performed the laboratory experiments, methodology, validation, and analysis; prepared the manuscript draft; and contributed to reviewing and editing. SG contributed to the conceptualization, validation, supervision, and reviewing and editing of the manuscript.

Corresponding author

Correspondence to Satyendra Gautam.

Ethics declarations

Ethics approval and consent to participate

NA

Consent for publication

All authors approved the manuscript for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 123 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, J., Gautam, S. Unravelling the key steps impairing the metabolic state of Xanthomonas cells undergoing programmed cell death. Int Microbiol (2024). https://doi.org/10.1007/s10123-023-00471-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10123-023-00471-w

Keywords

Navigation