Skip to main content
Log in

Efficient CO Oxidation by Co/Ta2O5 Prepared by Deposition–Precipitation with Urea

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

CO oxidation at mild condition is significant for industrial process but still challenging nowadays, especially for the non-noble metal catalysts. The preparation method significant affect the catalytic activity of the catalyst. Comparing with cobalt supported on tantalum oxide prepared by impregnation method, Co/Ta2O5 prepared by deposition–precipitation method with urea in this study has smaller particle size, higher specific surface area and better redox properties, and these features make the catalyst exhibit higher catalytic activity for CO oxidation at mild condition. 90% CO conversion was achieved at 130 ℃, and CO was fully converted at 150 ℃. The XPS and DRIFTs results show that Co/Ta2O5 has more oxygen vacancies, and the absorbed CO will react with oxygen. The study may provide a new thought for the preparation of catalysts with high activity at mild condition.

Graphical Abstract

Co/Ta2O5 prepared by deposition–precipitation with urea catalyzes the oxidation of CO

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim D, Park D, Song HC et al (2023) Metal encapsulation-driven strong metal-support interaction on Pt/Co3O4 during CO oxidation. ACS Catal 13(8):5326–5335

    Article  CAS  Google Scholar 

  2. Wang LC, Liu Q, Huang XS et al (2009) Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation. Appl Catal B-Environ 88(1–2):204–212

    Article  CAS  Google Scholar 

  3. Hinojosa-Reyes M, Zanella R, Maturano-Rojas V et al (2016) Gold–TiO2–nickel catalysts for low temperature-driven CO oxidation reaction. Appl Surf Sci 368:224–232

    Article  CAS  Google Scholar 

  4. Mahyuddin MH, Staykov A, Shiota Y, Yoshizawa K (2016) Direct conversion of methane to methanol by metal-exchanged ZSM-5 zeolite (metal = Fe Co, Ni, Cu). ACS Catal 6(12):8321–8331

    Article  CAS  Google Scholar 

  5. Mei J, Xie J, Qu Z et al (2018) Ordered mesoporous spinel Co3O4 as a promising catalyst for the catalytic oxidation of dibromomethane. Mol Catal 461:60–66

    Article  CAS  Google Scholar 

  6. Feng C, Liu X, Zhu T et al (2021) Catalytic oxidation of CO over Pt/TiO2 with low Pt loading: the effect of H2O and SO2. Appl Catal A 622:118218

    Article  CAS  Google Scholar 

  7. Qi D, Yao J, Luo X et al (2022) Study on CO catalytic oxidation mechanism on Pd/CeO2 surface models: the effect of oxygen vacancies on CO catalytic oxidation reaction. Chem Pap 76(11):6975–6983

    Article  CAS  Google Scholar 

  8. Cui X, Zhang X, Yang Y et al (2022) The noble metals M (M = Pd, Ag, Au) decorated CeO2 catalysts derived from solution combustion method for efficient low-temperature CO catalytic oxidation: effects of different M loading on catalytic performances. Nanotechnology 33(41):415705

    Article  Google Scholar 

  9. Rao R, Liang H, Hu C et al (2022) A melamine-assisted pyrolytic synthesis of Ag–CeO2 nanoassemblys for CO oxidation: activation of Ag–CeO2 interfacial lattice oxygen. Appl Surf Sci 571:151283

    Article  CAS  Google Scholar 

  10. Liu M, Liu C, Gouse Peera S et al (2022) Catalytic oxidation mechanism of CO on FeN2-doped graphene. Chem Phys 559:111536

    Article  CAS  Google Scholar 

  11. Tang B, Wang S, Li R et al (2019) Urea treated metal organic frameworks-graphene oxide composites derived N-doped Co-based materials as efficient catalyst for enhanced oxygen reduction. J Power Sources 425:76–86

    Article  CAS  Google Scholar 

  12. Dey S, Dhal GC, Mohan D et al (2019) Synthesis of highly active cobalt catalysts for low temperature CO oxidation. Chem Data Collect 24:100283

    Article  CAS  Google Scholar 

  13. Dey S, Dhal GC, Mohan D et al (2018) Synthesis and characterization of AgCoO2 catalyst for oxidation of CO at a low temperature. Polyhedron 155:102–113

    Article  CAS  Google Scholar 

  14. Yigit N, Genest A, Terloev S et al (2022) Active sites and deactivation of room temperature CO oxidation on Co(3)O(4)catalysts: combined experimental and computational investigations. J Phys Condens Matter 34(35):435801

    Article  Google Scholar 

  15. Prasad R, Singh P (2012) A review on CO oxidation over copper chromite catalyst. Catal Rev 54(2):224–279

    Article  CAS  Google Scholar 

  16. Wei Y, Li Y, Han D et al (2022) Facile strategy to construct porous CuO/CeO2 nanospheres with enhanced catalytic activity toward CO catalytic oxidation at low temperature. Appl Nanosci 13:3633–3641

    Article  Google Scholar 

  17. Guo J-X, Wu S-Y, Zhong S-Y et al (2021) Janus WSSe monolayer adsorbed with transition-metal atoms (Fe, Co and Ni): excellent performance for gas sensing and CO catalytic oxidation. Appl Surf Sci 565:150558

    Article  CAS  Google Scholar 

  18. Zhang T, Wu J, Xu Y et al (2017) Cobalt and cobalt carbide on alumina/NiAl(110) as model catalysts. Catal Sci Technol 7(24):5893–5899

    Article  CAS  Google Scholar 

  19. Liu Y, Jia L, Hou B et al (2017) Cobalt aluminate-modified alumina as a carrier for cobalt in Fischer–Tropsch synthesis. Appl Catal A 530:30–36

    Article  CAS  Google Scholar 

  20. Jiang Q, Gao J, Yi L et al (2016) Enhanced performance of dye-sensitized solar cells based on P25/Ta2O5 composite films. Appl Phys A 122(4):442

    Article  Google Scholar 

  21. Zhu G, Lin T, Cui H et al (2016) Gray Ta2O5 nanowires with greatly enhanced photocatalytic performance. ACS Appl Mater Interfaces 8(1):122–127

    Article  CAS  PubMed  Google Scholar 

  22. Ismail AA, Faisal M, Harraz FA et al (2016) Synthesis of mesoporous sulfur-doped Ta2O5 nanocomposites and their photocatalytic activities. J Colloid Interface Sci 471:145–154

    Article  CAS  PubMed  Google Scholar 

  23. Yang Y, Kawazoe Y (2018) Prediction of new ground-state crystal structure of Ta2O5. Phys Rev Mater 2(3):034602

    Article  CAS  Google Scholar 

  24. Rathnayake D, Perera I, Shirazi-Amin A et al (2020) Mesoporous crystalline niobium oxide with a high surface area: a solid acid catalyst for alkyne hydration. ACS Appl Mater Interfaces 12(42):47389–47396

    Article  CAS  PubMed  Google Scholar 

  25. Aryal B, Morikawa D, Tsuda K et al (2019) Electron diffraction study of crystal structures of (Sr1−xBax)2Nb2O7. Phys Rev Mater 3(4):044405

    Article  CAS  Google Scholar 

  26. Dey S, Dhal GC, Mohan D, Prasad R (2019) Advances in transition metal oxide catalysts for carbon monoxide oxidation: a review. Adv Compos Hybrid Mater 2(4):626–656

    Article  CAS  Google Scholar 

  27. Cao KLA, Rahmatika AM, Kitamoto Y et al (2021) Controllable synthesis of spherical carbon particles transition from dense to hollow structure derived from Kraft lignin. J Colloid Interface Sci 589:252–263

    Article  CAS  PubMed  Google Scholar 

  28. Li W-J, Tsai S, Wey M-Y (2021) Positive effects of a halloysite-supported Cu/Co catalyst fabricated by a urea-driven deposition precipitation method on the CO-SCR reaction and SO2 poisoning. Catal Sci Technol 11(10):3456–3465

    Article  CAS  Google Scholar 

  29. Wei YH, Li SY, Jing J et al (2019) Synthesis of Cu–Co catalysts for methanol decomposition to hydrogen production via deposition-precipitation with urea method. Catal Lett 149(10):2671–2682

    Article  CAS  Google Scholar 

  30. Zanella R (2004) Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J Catal 222(2):357–367

    Article  CAS  Google Scholar 

  31. Clause O, Bonneviot L, Che M et al (1991) EXAfs characterization of the adsorbed state of Ni(II) ions in Ni/SiO2 materials prepared by deposition-precipitation. J Catal 130(1):21–28

    Article  CAS  Google Scholar 

  32. Qin H, Wang H, Xia Q et al (2023) Efficient CO catalytic oxidation by the combination of cobalt and excellent carrier Ta2O5. Fuel 333:126179

    Article  CAS  Google Scholar 

  33. Natile MM, Glisenti A (2002) study of surface reactivity of cobalt oxides: interaction with methanol. Chem Mater 14(7):3090–3099

    Article  CAS  Google Scholar 

  34. Luo J-Y, Meng M, Li X et al (2008) Mesoporous Co3O4–CeO2 and Pd/Co3O4–CeO2 catalysts: synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation. J Catal 254(2):310–324

    Article  CAS  Google Scholar 

  35. Feng Z, Du C, Chen Y et al (2018) Improved durability of Co3O4 particles supported on SmMn2O5 for methane combustion. Catal Sci Technol 8(15):3785–3794

    Article  CAS  Google Scholar 

  36. Song W, Poyraz AS, Meng Y et al (2014) Mesoporous Co3O4 with controlled porosity: inverse micelle synthesis and high-performance catalytic CO oxidation at −60 °C. Chem Mater 26(15):4629–4639

    Article  CAS  Google Scholar 

  37. Ren Q, Mo S, Peng R et al (2018) Controllable synthesis of 3D hierarchical Co3O4 nanocatalysts with various morphologies for the catalytic oxidation of toluene. J Mater Chem A 6(2):498–509

    Article  CAS  Google Scholar 

  38. Jiang Y, Li W, Chen K et al (2022) A rod-like Co3O4 with high efficiency and large specific surface area for lean methane catalytic oxidation. Molecular Catalysis 522:112229

    Article  CAS  Google Scholar 

  39. Bae J, Shin D, Jeong H et al (2021) Facet-dependent Mn doping on shaped Co3O4 crystals for catalytic oxidation. ACS Catal 11(17):11066–11074

    Article  CAS  Google Scholar 

  40. Lu S, Zhu Q, Dong Y et al (2019) Influence of MnO2 morphology on the catalytic performance of Ag/MnO2 for the HCHO oxidation. Catal Surv Asia 23(3):210–218

    Article  CAS  Google Scholar 

  41. Zhong J, Zeng Y, Zhang M et al (2020) Toluene oxidation process and proper mechanism over Co3O4 nanotubes: investigation through in-situ DRIFTS combined with PTR-TOF-MS and quasi in-situ XPS. Chem Eng J 397:125375

    Article  CAS  Google Scholar 

  42. Ji L, Lin J, Zeng HC (2000) Metal−support interactions in Co/Al2O3 catalysts: a comparative study on reactivity of support. J Phys Chem B 104(8):1783–1790

    Article  CAS  Google Scholar 

  43. Xiong H, Nolan M, Shanks BH, Datye AK (2014) Comparison of impregnation and deposition precipitation for the synthesis of hydrothermally stable niobia/carbon. Appl Catal A 471:165–174

    Article  CAS  Google Scholar 

  44. Zhang Z, Li J, Yi T et al (2018) Surface density of synthetically tuned spinel oxides of Co3+ and Ni3+ with enhanced catalytic activity for methane oxidation. Chin J Catal 39(7):1228–1239

    Article  CAS  Google Scholar 

  45. Szymanowski H, Zabeida O, Klemberg-Sapieha JE, Martinu L (2005) Optical properties and microstructure of plasma deposited Ta2O5 and Nb2O5 films. J Vac Sci Technol A Vac Surf Films 23(2):241–247

    Article  CAS  Google Scholar 

  46. Cai Z, Li J, Liew K, Hu J (2010) Effect of La2O3-dopping on the Al2O3 supported cobalt catalyst for Fischer–Tropsch synthesis. J Mol Catal A Chem 330(1–2):10–17

    Article  CAS  Google Scholar 

  47. Zhang J, Chen J, Ren J, Sun Y (2003) Chemical treatment of γ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis. Appl Catal A 243(1):121–133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Jiangsu Province (BK20210983).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huabing Zhang or Fengli Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Q., Qin, H., Xia, F. et al. Efficient CO Oxidation by Co/Ta2O5 Prepared by Deposition–Precipitation with Urea. Catal Lett (2024). https://doi.org/10.1007/s10562-023-04551-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-023-04551-4

Keywords

Navigation