Skip to main content
Log in

Autonomous navigation of marine surface vessel in extreme encounter situation

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

With the development of artificial intelligence (AI) technology, the autonomous navigation and behavior decision-making capabilities of MASS (marine autonomous surface ship) are constantly being innovated, thereby ensuring their safe navigation. However, the recent algorithms exhibit limited efficacy in navigating in unknown and complex environments, while also lacking the capability to effectively handle the encounters resulting from the uncertain behavior of other ships. Consequently, this study proposes an intelligent navigation methodology utilizing the PRM (Probabilistic Roadmap) and PPO (Proximal Policy Optimization) algorithm to facilitate autonomous navigation and collision avoidance decision-making for MASS. Moreover, the MASS disciplined behaviors prescribed by COLREGs are taken into the consideration of the reward function design. Particularly, in extreme encounter situation, it becomes necessary for MASS to depart from COLREGs, thus requiring a corresponding definition of the reward function. Finally, the autonomous navigation and decision-making capability of the MASS is evaluated using real-time ship traffic in a voyage scenario, while various extreme encounter situations are also simulated to demonstrate the generality and practicality of the proposed PRM-PPO method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Chauvin C, Lardjane S, Morel G et al (2013) Human and organisational factors in maritime accidents: Analysis of collisions at sea using the HFACS. Acc Anal Prev 59:26–37

    Article  Google Scholar 

  2. Qu Y, Cai LL (2022) Real-time emergency collision avoidance for unmanned surface vehicles with COLREGS flexibly obeyed. J Mar Sci Eng 10(12):2025

    Article  Google Scholar 

  3. Xie W, Fang X, Wu S (2020) 2.5D navigation graph and improved a-star algorithm for path planning in ship inside virtual environment. In: 2020 Prognostics and Health Management Conference (PHM-Besançon), 2020

  4. He Z, Liu C, Chu X et al (2022) Dynamic anti-collision A-star algorithm for multi-ship encounter situations. Appl Ocean Res 118:102995

    Article  Google Scholar 

  5. Chen XJ, Liu YX, Hong XB et al (2018) Unmanned ship path planning based on RRT. In: 14th International Conference on Intelligent Computing (ICIC 2018), Springer, Cham, 2018

  6. Zhang X, Chen X (2021) Path planning method for unmanned surface vehicle based on RRT* and DWA. In: International Conference on Multimedia Technology and Enhanced Learning (ICMTEL2021), Springer, Cham, 2021

  7. He ZB, Chu XM, Liu CG et al (2023) A novel model predictive artificial potential field based ship motion planning method considering COLREGs for complex encounter scenarios. ISA Trans 134:58–73

    Article  PubMed  Google Scholar 

  8. Han S, Wang L, Wang Y et al (2022) A dynamically hybrid path planning for unmanned surface vehicles based on non-uniform Theta* and improved dynamic windows approach. Ocean Eng Aug.1 Pt.2:257

    Google Scholar 

  9. Mnih V, Kavukcuoglu K, Silver D et al (2015) Human-level control through deep reinforcement learning. Nature 518:529–533

    Article  ADS  PubMed  CAS  Google Scholar 

  10. Silver D, Hubert T, Schrittwieser J et al (2018) A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362(6419):1140

    Article  ADS  MathSciNet  PubMed  CAS  Google Scholar 

  11. Li L, Wu D, Huang Y et al (2021) A path planning strategy unified with a COLREGS collision avoidance function based on deep reinforcement learning and artificial potential field. Appl Ocean Res 113:102759

    Article  Google Scholar 

  12. Shen H, Hashimoto H, Matsuda A et al (2019) Automatic collision avoidance of multiple ships based on deep Q-learning. Appl Ocean Res 86:268–288

    Article  Google Scholar 

  13. Zhai PY, Zhang YJ, Wang SB (2022) Intelligent Ship collision avoidance algorithm based on DDQN with prioritized experience replay under COLREGs. J Mar Sci Eng 10(5):585

    Article  Google Scholar 

  14. Xu X, Lu Y, Liu G et al (2022) COLREGs-abiding hybrid collision avoidance algorithm based on deep reinforcement learning for USVs. Ocean Eng 247:110749

    Article  Google Scholar 

  15. Zhao YM, Han FL, Han DF et al (2022) Decision-making for the autonomous navigation of USVs based on deep reinforcement learning under IALA maritime buoyage system. Ocean Eng 266:112557

    Article  Google Scholar 

  16. Guan W, Cui ZW, Zhang XK (2022) Intelligent smart marine autonomous surface ship decision system based on improved PPO ALgorithm. Sensors 22(15):5732

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Guan W, Peng HW, Zhang XK et al (2022) Ship steering adaptive CGS control based on EKF identification method. J Mar Sci Eng 10(2):294

    Article  Google Scholar 

  18. Goodwin E (1975) A statistical study of ship domains. J Navig 28(3):328–344

    Article  ADS  Google Scholar 

  19. Rongcai Z, Hongwei X, Kexin Y (2023) Autonomous collision avoidance system in a multi-ship environment based on proximal policy optimization method. Ocean Eng 272:113779

    Article  Google Scholar 

  20. Kuwata Y, Wolf MT, Zarzhitsky D et al (2014) Safe maritime autonomous navigation with COLREGS, using velocity obstacles. IEEE J Oceanic Eng 39(1):110–119

    Article  ADS  Google Scholar 

  21. Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Robot Res 30(7):846–894

    Article  Google Scholar 

  22. Duchon F, Babinec A, Kajan M et al (2014) Path planning with modified A star algorithm for a mobile robot. Proc Eng 96:56–59

    Article  Google Scholar 

  23. Thorp HH (2023) ChatGPT is fun, but not an author. Science 379:313–313

    Article  ADS  PubMed  Google Scholar 

  24. Zhao LM, Roh MI (2019) COLREGs-compliant multiship collision avoidance based on deep reinforcement learning. Ocean Eng 191:106436

    Article  Google Scholar 

  25. Wang CB, Zhang XY, Yang ZL et al (2023) Collision avoidance for autonomous ship using deep reinforcement learning and prior-knowledge-based approximate representation. Front Mar Sci 9:1084763

    Article  Google Scholar 

  26. Johansen TA, Perez T, Cristofaro A (2016) Ship collision avoidance and COLREGS compliance using simulation-based control behavior selection with predictive hazard assessment. IEEE Trans Intell Transp Syst 17(12):3407–3422

    Article  Google Scholar 

  27. Christiano PF, Leike J, Brown TB et al (2023) Deep reinforcement learning from human preferences. arXiv preprint arXiv: 1706.03741

  28. Zheng Z, Oh J, Singh S (2018) On learning intrinsic rewards for policy gradient methods. arXiv preprint arXiv: 1804.06459

  29. Zheng Z, Oh J, Hessel M et al (2019) What can learned intrinsic rewards capture. arXiv preprint arXiv:1912.05500

  30. Guan W, Zhao MY, Zhang CB et al (2023) Generalized behavior decision-making model for ship collision avoidance via reinforcement learning method. J Mar Sci Eng 11(2):273

    Article  Google Scholar 

  31. Duan J, Shi D, Diao R et al (2020) Deep-reinforcement-learning-based autonomous voltage control for power grid operations. IEEE Trans Power Syst 35(1):814–817

    Article  ADS  Google Scholar 

  32. Schulman J, Wolski F, Dhariwal S et al (2017) Proximal policy optimization algorithms. arXiv preprint arXiv: 1707.06347

  33. Kavraki LE, Svestka P, Latombe JC et al (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12:566–580

    Article  Google Scholar 

Download references

Funding

This work was funded by National Natural Science Foundation of China to Wei Guan with Grant number 52171342 and by DMU navigation college first-class interdisciplinary research project to Wei Guan with Grant number 2023JXA03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Guan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, W., Han, H. & Cui, Z. Autonomous navigation of marine surface vessel in extreme encounter situation. J Mar Sci Technol 29, 167–180 (2024). https://doi.org/10.1007/s00773-023-00979-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-023-00979-w

Keywords

Navigation