Skip to main content

Advertisement

Log in

The Combination of 5-FU and Resveratrol Can Suppress the Growth of Glioblastoma Cells Through Downregulation of TRPM2 and β-Catenin

  • Research
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

A Correction to this article was published on 16 February 2024

This article has been updated

Abstract

Glioblastoma multiforme (GBM) is the most common as well as the most fatal primary malignant tumor of the central nervous system (CNS), which still lacks a definitive cure. 5-FU is an anti-metabolite anti-cancer agent which has shown promising results for GBM treatment. Resveratrol (Res) is a phytochemical anti-oxidant that has also been effective in suppressing the progression of GBM. The combination of 5-FU and Res has been studied in a variety of cancers, but no study has assessed this combination in GBM. In this study, we investigated how 5-FU and Res, in combination and alone, may affect the growth and apoptosis of GBM cells and also the potential of TRPM2 and β-catenin as the mediator of their effects. U87 cells were cultured as the in vitro model. MTT assay was used for measuring cellular growth, and RT-qPCR was used to measure the level of caspase-3, TRPM2, and β-catenin; caspase-3 level served as the indicator of apoptotic rate. 5-FU and Res, in combination and alone, suppressed the growth while promoting the apoptosis of U87 cells; these effects were significantly greater when they were used in combination. RT-qPCR showed downregulation of TRPM-2 and β-catenin in response to this combination, which suggested that these two molecules may mediate the cited anti-oncogenic effects. In conclusion, our study confirmed the synergism between 5-FU and Res in suppressing the progression of GBM and suggested the putative axis of TRPM2/ β-catenin as the downstream mediator of this therapeutic regime. Future studies may be able to approve the eligibility of this therapeutic regime for GBM treatment and also the underlying mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Change history

References

  • Aghamiri S, Jafarpour A, Zandsalimi F, Aghemiri M, Shoja M (2019) Effect of resveratrol on the radiosensitivity of 5-FU in human breast cancer MCF-7 cells. J Cell Biochem 120(9):15671–15677

    Article  CAS  PubMed  Google Scholar 

  • Akyuva Y, Nazıroğlu M (2020) Resveratrol attenuates hypoxia-induced neuronal cell death, inflammation and mitochondrial oxidative stress by modulation of TRPM2 channel. Sci Rep 10(1):6449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alptekin M, Eroglu S, Tutar E, Sencan S, Geyik MA, Ulasli M et al (2015) Gene expressions of TRP channels in glioblastoma multiforme and relation with survival. Tumour Biol 36(12):9209–9213

    Article  CAS  PubMed  Google Scholar 

  • Armisén R, Marcelain K, Simon F, Tapia JC, Toro J, Quest AF et al (2011) TRPM4 enhances cell proliferation through up-regulation of the β-catenin signaling pathway. J Cell Physiol 226(1):103–109

    Article  PubMed  Google Scholar 

  • Ashmore J, Olsen H, Sørensen N, Thrasivoulou C, Ahmed A (2019) Wnts control membrane potential in mammalian cancer cells. J Physiol 597(24):5899–5914

    Article  CAS  PubMed  Google Scholar 

  • Bai R, Miao MZ, Li H, Wang Y, Hou R, He K et al (2022) Increased Wnt/β-catenin signaling contributes to autophagy inhibition resulting from a dietary magnesium deficiency in injury-induced osteoarthritis. Arthritis Res Ther 24(1):165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beale JM, Block J, Hill R (2010) Organic medicinal and pharmaceutical chemistry: Lippincott Williams & Wilkins Philadelphia

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529

    Article  CAS  PubMed  Google Scholar 

  • Brockmueller A, Girisa S, Kunnumakkara AB, Shakibaei M (2023) Resveratrol Modulates Chemosensitisation to 5-FU via β1-Integrin/HIF-1α Axis in CRC Tumor Microenvironment. Int J Mol Sci 24(5)

  • Buhrmann C, Yazdi M, Popper B, Shayan P, Goel A, Aggarwal BB et al (2018) Resveratrol Chemosensitizes TNF-β-induced survival of 5-FU-treated colorectal cancer cells. Nutrients 10(7)

  • Cai S, Fatherazi S, Presland RB, Belton CM, Izutsu KT (2005) TRPC channel expression during calcium-induced differentiation of human gingival keratinocytes. J Dermatol Sci 40(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Cheung JY, Miller BA (2017) Transient receptor potential-melastatin channel family member 2: friend or foe. Trans Am Clin Climatol Assoc 128:308–329

    PubMed  PubMed Central  Google Scholar 

  • Cho YH, Ro EJ, Yoon JS, Mizutani T, Kang DW, Park JC et al (2020) 5-FU promotes stemness of colorectal cancer via p53-mediated WNT/β-catenin pathway activation. Nat Commun 11(1):5321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cilibrasi C, Riva G, Romano G, Cadamuro M, Bazzoni R, Butta V et al (2017) Resveratrol impairs glioma stem cells proliferation and motility by modulating the Wnt signaling pathway. PLoS ONE 12(1):e0169854

    Article  PubMed  PubMed Central  Google Scholar 

  • Cloughesy TF, Landolfi J, Hogan DJ, Bloomfield S, Carter B, Chen CC et al (2016) Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci Transl Med 8(341):341ra75-ra75

  • Dadgostar E, Fallah M, Izadfar F, Heidari-Soureshjani R, Aschner M, Tamtaji OR et al (2021) Therapeutic potential of resveratrol in the treatment of glioma: insights into its regulatory mechanisms. Mini Rev Med Chem 21(18):2835–2847

    Article  CAS  PubMed  Google Scholar 

  • Daldal H, Nazıroğlu M (2022) Selenium and resveratrol attenuated diabetes mellitus-mediated oxidative retinopathy and apoptosis via the modulation of TRPM2 activity in mice. Biol Trace Elem Res 200(5):2283–2297

    Article  CAS  PubMed  Google Scholar 

  • Davoodvandi A, Darvish M, Borran S, Nejati M, Mazaheri S, Tamtaji OR et al (2020) The therapeutic potential of resveratrol in a mouse model of melanoma lung metastasis. Int Immunopharmacol 88:106905

    Article  CAS  PubMed  Google Scholar 

  • Di A, Gao X-P, Qian F, Kawamura T, Han J, Hecquet C et al (2012) The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat Immunol 13(1):29–34

    Article  CAS  Google Scholar 

  • Dong S, Liang S, Cheng Z, Zhang X, Luo L, Li L et al (2022) ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer. J Exp Clin Cancer Res 41(1):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, Taylor RE et al (2005) Beta-catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J Clin Oncol 23(31):7951–7957

    Article  CAS  PubMed  Google Scholar 

  • Ertilav K, Nazıroğlu M, Ataizi ZS, Braidy N (2019) Selenium enhances the apoptotic efficacy of docetaxel through activation of TRPM2 channel in DBTRG glioblastoma cells. Neurotox Res 35(4):797–808

    Article  CAS  PubMed  Google Scholar 

  • Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27(2–3):126–139

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Wang W, Tadagavadi RK, Briley NE, Love MI, Miller BA et al (2014) TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1. J Clin Investig 124(11):4989–5001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guler Y, Ovey IS (2018) Synergic and comparative effect of 5-fluorouracil and leucoverin on breast and colon cancer cells through TRPM2 channels. Bratisl Lek Listy 119(11):692–700

    CAS  PubMed  Google Scholar 

  • Herencia C, Rodríguez-Ortiz ME, Muñoz-Castañeda JR, Martinez-Moreno JM, Canalejo R, Montes de Oca A et al (2015) Angiotensin II prevents calcification in vascular smooth muscle cells by enhancing magnesium influx. Eur J Clin Invest 45(11):1129–44

  • Hermosura MC, Cui AM, Go RCV, Davenport B, Shetler CM, Heizer JW et al (2008) Altered functional properties of a TRPM2 variant in Guamanian ALS and PD. Proc Natl Acad Sci 105(46):18029–18034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong X, Yu JJ (2019) MicroRNA-150 suppresses epithelial-mesenchymal transition, invasion, and metastasis in prostate cancer through the TRPM4-mediated β-catenin signaling pathway. Am J Physiol Cell Physiol 316(4):C463–C480

    Article  CAS  PubMed  Google Scholar 

  • Hopkins MM, Feng X, Liu M, Parker LP, Koh DW (2015) Inhibition of the transient receptor potential melastatin-2 channel causes increased DNA damage and decreased proliferation in breast adenocarcinoma cells. Int J Oncol 46(5):2267–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishibashi M, Ishii M, Yamamoto S, Mori Y, Shimizu S (2021) Possible involvement of TRPM2 activation in 5-fluorouracil-induced myelosuppression in mice. Eur J Pharmacol 891:173671

    Article  CAS  PubMed  Google Scholar 

  • Ishii M, Oyama A, Hagiwara T, Miyazaki A, Mori Y, Kiuchi Y et al (2007) Facilitation of H2O2-induced A172 human glioblastoma cell death by insertion of oxidative stress-sensitive TRPM2 channels. Anticancer Res 27(6b):3987–3992

    CAS  PubMed  Google Scholar 

  • Jeandet P, Delaunois B, Conreux A, Donnez D, Nuzzo V, Cordelier S et al (2010) Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. BioFactors 36(5):331–341

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Chatterjee PK, Madankumar S, Mehdi SF, Xue X, Metz CN (2020) Magnesium deficiency with high calcium-to-magnesium ratio promotes a metastatic phenotype in the CT26 colon cancer cell line. Magnes Res 33(3):68–85

    Article  CAS  PubMed  Google Scholar 

  • Li X, Bu F, Ma S, Cananzi F, Zhao Y, Xiao M et al (2022) The Janus-faced role of TRPM2-S in retroperitoneal liposarcoma via increasing ROS levels. Cell Commun Signal 20(1):128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X et al (2022) Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 7(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Zhang Y, Zhu K, Song L, Tao M, Huang P et al (2018) Resveratrol inhibits glioma cell growth via targeting LRIG1. J Buon 23(2):403–409

    PubMed  Google Scholar 

  • Liu T, Hu J, Han B, Tan S, Jia W, Xin Y (2021) A positive feedback loop of lncRNA-RMRP/ZNRF3 axis and Wnt/β-catenin signaling regulates the progression and temozolomide resistance in glioma. Cell Death Dis 12(11):952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Patel L, Mills GB, Lu KH, Sood AK, Ding L et al (2014) Clinical significance of CTNNB1 mutation and Wnt pathway activation in endometrioid endometrial carcinoma. J Natl Cancer Inst 106(9)

  • Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–338

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Song K, Wu S, Hameed NUF, Kudulaiti N, Xu H et al (2021) The prognosis of glioblastoma: a large, multifactorial study. Br J Neurosurg 35(5):555–561

    Article  PubMed  Google Scholar 

  • Majchrzak-Celińska A, Zielińska-Przyjemska M, Wierzchowski M, Kleszcz R, Studzińska-Sroka E, Kaczmarek M et al (2021) Methoxy-stilbenes downregulate the transcription of Wnt/β-catenin-dependent genes and lead to cell cycle arrest and apoptosis in human T98G glioblastoma cells. Adv Med Sci 66(1):6–20

    Article  PubMed  Google Scholar 

  • Menei P, Jadaud E, Faisant N, Boisdron-Celle M, Michalak S, Fournier D et al (2004) Stereotaxic implantation of 5-fluorouracil-releasing microspheres in malignant glioma. Cancer 100(2):405–410

    Article  CAS  PubMed  Google Scholar 

  • Miller BA (2019) TRPM2 in Cancer. Cell Calcium 80:8–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KD, Ostrom QT, Kruchko C, Patil N, Tihan T, Cioffi G et al (2021) Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin 71(5):381–406

  • Montes de Oca A, Guerrero F, Martinez-Moreno JM, Madueño JA, Herencia C, Peralta A et al (2014) Magnesium inhibits Wnt/β-catenin activity and reverses the osteogenic transformation of vascular smooth muscle cells. PLoS One 9(2):e89525

  • Mori Y, Wakamori M, Miyakawa T, Hermosura M, Hara Y, Nishida M et al (2002) Transient receptor potential 1 regulates capacitative Ca2+ entry and Ca2+ release from endoplasmic reticulum in B lymphocytes. J Exp Med 195(6):673–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moutabian H, Majdaeen M, Ghahramani-Asl R, Yadollahi M, Gharepapagh E, Ataei G et al (2022) A systematic review of the therapeutic effects of resveratrol in combination with 5-fluorouracil during colorectal cancer treatment: with a special focus on the oxidant, apoptotic, and anti-inflammatory activities. Cancer Cell Int 22(1):142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumeyer V, Brutau-Abia A, Allgäuer M, Pfarr N, Weichert W, Falkeis-Veits C et al (2021) Loss of RNF43 function contributes to gastric carcinogenesis by impairing DNA damage response. Cell Mol Gastroenterol Hepatol 11(4):1071–1094

    Article  CAS  PubMed  Google Scholar 

  • Öcal Ö, Nazıroğlu M (2022) Eicosapentaenoic acid enhanced apoptotic and oxidant effects of cisplatin via activation of TRPM2 channel in brain tumor cells. Chem Biol Interact 359:109914

    Article  PubMed  Google Scholar 

  • Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol 20(suppl_4):iv1-iv86

  • Öztürk Y, Günaydın C, Yalçın F, Nazıroğlu M, Braidy N (2019) Resveratrol enhances apoptotic and oxidant effects of paclitaxel through TRPM2 channel activation in DBTRG glioblastoma cells. Oxid Med Cell Longev 2019:4619865

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagano E, Romano B, Cicia D, Iannotti FA, Venneri T, Lucariello G et al (2023) TRPM8 indicates poor prognosis in colorectal cancer patients and its pharmacological targeting reduces tumour growth in mice by inhibiting Wnt/β-catenin signalling. Br J Pharmacol 180(2):235–251

    Article  CAS  PubMed  Google Scholar 

  • Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R et al (2017) Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol 10(1):101

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H et al (2020) Autophagy-related microRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol 153:103063

    Article  PubMed  Google Scholar 

  • Sagredo AI, Sagredo EA, Cappelli C, Báez P, Andaur RE, Blanco C et al (2018) TRPM4 regulates Akt/GSK3-β activity and enhances β-catenin signaling and cell proliferation in prostate cancer cells. Mol Oncol 12(2):151–165

    Article  CAS  PubMed  Google Scholar 

  • Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M et al (2018) Resveratrol: a double-edged sword in health benefits. Biomedicines 6(3)

  • Sánchez-Melgar A, Muñoz-López S, Albasanz JL, Martín M (2021) Antitumoral action of resveratrol through adenosinergic signaling in C6 glioma cells. Front Neurosci 15:702817

    Article  PubMed  PubMed Central  Google Scholar 

  • Shergalis A, Bankhead A 3rd, Luesakul U, Muangsin N, Neamati N (2018) Current challenges and opportunities in treating glioblastoma. Pharmacol Rev 70(3):412–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinde G, Shiyani S, Shelke S, Chouthe R, Kulkarni D, Marvaniya K (2020) Enhanced brain targeting efficiency using 5-FU (fluorouracil) lipid-drug conjugated nanoparticles in brain cancer therapy. Prog Biomater 9(4):259–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skrypina NA, Timofeeva AV, Khaspekov GL, Savochkina LP, Beabealashvilli RS (2003) Total RNA suitable for molecular biology analysis. J Biotechnol 105(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Sukumaran P, Selvaraj S, Cilz NI, Schaar A, Lei S et al (2018) TRPM2 promotes neurotoxin MPP(+)/MPTP-induced cell death. Mol Neurobiol 55(1):409–420

    Article  CAS  PubMed  Google Scholar 

  • Sweeney M, Yu Y, Platoshyn O, Zhang S, McDaniel SS, Yuan JX-J (2002) Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 283(1):L144-L55

  • Taniguchi K, Roberts LR, Aderca IN, Dong X, Qian C, Murphy LM et al (2002) Mutational spectrum of β-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene 21(31):4863–4871

    Article  CAS  PubMed  Google Scholar 

  • Thebault S, Flourakis M, Vanoverberghe K, Vandermoere F, Roudbaraki M, Lehen’Kyi VY et al (2006) Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Can Res 66(4):2038–2047

    Article  CAS  Google Scholar 

  • Tomar VS, Patil V, Somasundaram K (2020) Temozolomide induces activation of Wnt/β-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol 36(3):273–278

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Wang L, Moreno-Vinasco L, Lang GD, Siegler JH, Mathew B et al (2012) Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation. Part Fibre Toxicol 9:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Xiao Y, Huang M, Shen B, Xue H, Wu K (2021) Effect of TRPM2-mediated calcium signaling on cell proliferation and apoptosis in esophageal squamous cell carcinoma. Technol Cancer Res Treat 20:15330338211045212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhao L, Lin Z, Yu D, Jin M, Zhou P et al (2022) Targeting DCLK1 overcomes 5-fluorouracil resistance in colorectal cancer through inhibiting CCAR1/β-catenin pathway-mediated cancer stemness. Clin Transl Med 12(5):e743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Zagranichnaya TK, Gurda GT, Eves EM, Villereal ML (2004a) A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19–7 hippocampal neuronal cells*♦. J Biol Chem 279(42):43392–43402

    Article  CAS  PubMed  Google Scholar 

  • Wu SL, Sun ZJ, Yu L, Meng KW, Qin XL, Pan CE (2004b) Effect of resveratrol and in combination with 5-FU on murine liver cancer. World J Gastroenterol 10(20):3048–3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y et al (2008) TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14(7):738–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HC, Wang JY, Bu XY, Yang B, Wang BQ, Hu S et al (2019) Resveratrol restores sensitivity of glioma cells to temozolamide through inhibiting the activation of Wnt signaling pathway. J Cell Physiol 234(5):6783–6800

    Article  CAS  PubMed  Google Scholar 

  • Ye C, Qi L, Li X, Wang J, Yu J, Zhou B et al (2020) Targeting the NAD+ salvage pathway suppresses APC mutation-driven colorectal cancer growth and Wnt/β-catenin signaling via increasing Axin level. Cell Commun Signal 18:1–17

    Article  Google Scholar 

  • Yildizhan K, Çinar R, Naziroğlu M (2022) The involvement of TRPM2 on the MPP(+)-induced oxidative neurotoxicity and apoptosis in hippocampal neurons from neonatal mice: protective role of resveratrol. Neurol Res 44(7):636–644

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Cai H, Sun L, Zhan P, Chen M, Zhang F et al (2018) LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the Wnt/β-catenin pathway and predicts poor survival of glioma patients. J Exp Clin Cancer Res 37(1):225

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FA, MN, AR, HK, MD, and HM contributed to the conception, design, and drafting of the manuscript.

Corresponding authors

Correspondence to Maryam Darvish or Hamed Mirzaei.

Ethics declarations

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghababaei, F., Nejati, M., Karami, H. et al. The Combination of 5-FU and Resveratrol Can Suppress the Growth of Glioblastoma Cells Through Downregulation of TRPM2 and β-Catenin. J Mol Neurosci 74, 7 (2024). https://doi.org/10.1007/s12031-023-02174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12031-023-02174-3

Keywords

Navigation