Skip to main content
Log in

Antioxidant response to ZnO nanoparticles in juvenile Takifugu obscurus: protective effects of salinity

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The extensive utilization of Zinc Oxide nanoparticles (ZnO NPs) has garnered significant attention due to their detrimental impacts on ecosystem. Unfortunately, ecotoxicity of ZnO NPs in coastal waters with fluctuating salinity has been disregarded. This study mainly discussed the toxic effects of ZnO NPs on species inhabiting the transition zones between freshwater and brackish water, who are of great ecological and economic importance among fish. To serve as the model organism, Takifugu obscurus, a juvenile euryhaline fish, was exposed to different ZnO NPs concentrations (0–200 mg/L) and salinity levels (0 and 15 ppt). The results showed that a moderate increase in salinity (15 ppt) could alleviate the toxic effect of ZnO NPs, as evidenced by improved survival rates. The integrated biomarker response index on oxidative stress also revealed that the toxicity of ZnO NPs was higher in freshwater compared to brackish water. These outcomes can be attributed to higher salinity (15 ppt) reducing the bioavailability of ZnO NPs by facilitating their aggregation and inhibiting the release of metal ions. It is noteworthy that elevated salinity was found to alleviate ZnO NPs toxicity by means of osmotic adjustment via the activation of Na+/K+-ATPase activity. This study demonstrates the salinity-dependent effect of ZnO NPs on T. obscurus, suggesting the possibility for euryhaline fish like T. obscurus to adapt their habitat towards more saline environments, under constant exposure to ZnO NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  • Beak S, Joo SH, Su C, Toborek M (2020) Toxicity of ZnO/TiO2-conjugated carbon-based nanohybrids on the coastal marine alga Thalassiosira pseudonana. Environ Toxicol 35:87–96

    Article  Google Scholar 

  • Beliaeff B, Burgeot T (2002) Integrated biomarker response: a useful tool for ecological risk assessment. Environ Toxicol Chem 21:1316–1322

    Article  CAS  Google Scholar 

  • Bielmyer GK, Bullington JB, DeCarlo CA, Chalk SJ, Smith K (2012) The effects of salinity on acute toxicity of zinc to two euryhaline species of fish, Fundulus heteroclitus and Kryptolebias marmoratus. Integr Comp Biol 52:753–760

    Article  CAS  Google Scholar 

  • Bielmyer GK, DeCarlo C, Morris C, Carrigan T (2013) The influence of salinity on acute nickel toxicity to the two euryhaline fish species, Fundulus heteroclitus and Kryptolebias marmoratus. Environ Toxicol Chem 32:1354–1359

    Article  CAS  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200

    Article  CAS  Google Scholar 

  • Bruinink A, Wang J, Wick P (2015) Effect of particle agglomeration in nanotoxicology. Arch Toxicol 89:659–675

    Article  CAS  Google Scholar 

  • Chen C, Chen KQ, Su T, Zhang B, Li GZ, Pan JF, Si MR (2019) Myo-inositol-1-phosphate synthase (Ino-1) functions as a protection mechanism in corynebacterium glutamicum under oxidative stress. Microbiol Open 8:e00721

    Article  Google Scholar 

  • Chen HC, Song CC, Z T, Hogstrand C, Wei XL, Lv WH, Song YF, Luo Z (2022) Mitochondria-Dependent Oxidative Stress Mediates ZnO Nanoparticle (ZnO NP)-Induced Mitophagy and Lipotoxicity in Freshwater Teleost Fish. Environ Sci Technol 56:2407–2420

    Article  CAS  Google Scholar 

  • Chen TH, Lin CC, Meng PJ (2014) Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio). J Hazard Mater 277:134–140

    Article  CAS  Google Scholar 

  • Chupani L, Niksirat H, Lünsmann V, Haange SB, von Bergen M, Jehmlich N, Zuskova E (2018) Insight into the modulation of intestinal proteome of juvenile common carp (Cyprinus carpio L.) after dietary exposure to ZnO nanoparticles. Sci Total Environ 613-614:62–71

    Article  CAS  Google Scholar 

  • Cong Y, Jin F, Wang JY, Mu JL (2017) The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma. Aquat Toxicol 185:11–18

    Article  CAS  Google Scholar 

  • David CA, Galceran J, Rey-Castro C, Puy J, Companys E, Salvador J, Monné J, Wallace R, Vakourov A (2012) Dissolution kinetics and solubility of ZnO nanoparticles followed by AGNES. J Phys Chem C 116:11758–11767

    Article  CAS  Google Scholar 

  • Degger N, Tse ACK, Wu RSS (2015) Silver nanoparticles disrupt regulation of steroidogenesis in fish ovarian cells. Aquat Toxicol 169:143–151

    Article  CAS  Google Scholar 

  • Dhupal M, Oh JM, Tripathy DR, Kim SK, Koh SB, Park KS (2018) Immunotoxicity of titanium dioxide nanoparticles via simultaneous induction of apoptosis and multiple toll-like receptors signaling through ROS-dependent SAPK/JNK and p38 MAPK activation. Int J Nanomed 13:6735–6750

    Article  CAS  Google Scholar 

  • Feng JN, Guo XP, Chen YR, Lu DP, Niu ZS, Tou FY, Hou LJ, Xu J, Min L, Yang Y (2020) Time-dependent effects of ZnO nanoparticles on bacteria in an estuarine aquatic environment. Sci Total Environ 698:134298

    Article  CAS  Google Scholar 

  • Fréchette-Viens L, Hadioui M, Wilkinson KJ (2019) Quantification of ZnO nanoparticles and other Zn containing colloids in natural waters using a high sensitivity single particle ICP-MS. Talanta 200:156–162

    Article  Google Scholar 

  • Godfrey JD, Stewart DC, Middlemas SJ, Armstrong JD (2014) Depth use and migratory behaviour of homing Atlantic salmon (Salmo salar) in Scottish coastal waters. ICES J Mar Sci 72:568–575

    Article  Google Scholar 

  • Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MTD (2015) Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale 7:2154–2198

    Article  CAS  Google Scholar 

  • Hou J, Liu HQ, Zhang SY, Liu XH, Hayat T, Alsaedi A, Wang XK (2019) Mechanism of toxic effects of Nano-ZnO on cell cycle of zebrafish (Danio rerio). Chemosphere 229:206–213

    Article  CAS  Google Scholar 

  • Hu G, Cao JJ (2019) Metal-containing nanoparticles derived from concealed metal deposits: An important source of toxic nanoparticles in aquatic environments. Chemosphere 224:726–733

    Article  CAS  Google Scholar 

  • Huang CW, Chang CH, Li SW, Yen PL, Liao VHC (2020) Co-exposure to foodborne and waterborne ZnO nanoparticles in aquatic sediment environments enhances DNA damage and stress gene expression in freshwater Asian clam Corbicula fluminea. Environ Sci: Nano 7:1252–1265

    CAS  Google Scholar 

  • Joo SH, Zhao D (2017) Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review. J Hazard Mater 322:29–47

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119

    Article  CAS  Google Scholar 

  • Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices. Environ Sci Technol 44:1962–1967

    Article  CAS  Google Scholar 

  • Khosravi-Katuli K, Lofrano G, Pak Nezhad H, Giorgio A, Guida M, Aliberti F, Siciliano A, Carotenuto M, Galdiero E, Rahimi E, Libralato G (2018) Effects of ZnO nanoparticles in the Caspian roach (Rutilus rutilus caspicus). Sci Total Environ 626:30–41

    Article  CAS  Google Scholar 

  • Kim J-H, Kim W-K (2016) Use of the integrated biomarker response to measure the effect of short-term exposure to dibenz[a,h]anthracene in common carp (Cyprinus carpio). B Environ Contam Toxicol 96:496–501

    Article  CAS  Google Scholar 

  • Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: Mechanism and the influence of medium components. Environ Sci Techno 45:1977–1983

    Article  CAS  Google Scholar 

  • Libralato G, Costa Devoti A, Zanella M, Sabbioni E, Mičetić I, Manodori L, Pigozzo A, Manenti S, Groppi F, Volpi Ghirardini A (2016) Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotox Environ Safe 123:81–88

    Article  CAS  Google Scholar 

  • Lin L, Xu MZ, Mu HW, Wang WW, Sun J, He J, Qiu JW, Luan TG (2019) Quantitative proteomic analysis to understand the mechanisms of zinc oxide nanoparticle toxicity to Daphnia Pulex (Crustacea: Daphniidae): comparing with bulk zinc oxide and zinc salt. Environ Sci Technol 53:5436–5444

    Article  CAS  Google Scholar 

  • Lofrano G, Carotenuto M, Libralato G, Domingos RF, Markus A, Dini L, Gautam RK, Baldantoni D, Rossi M, Sharma SK, Chattopadhyaya MC, Giugni M, Meric S (2016) Polymer functionalized nanocomposites for metals removal from water and wastewater: An overview. Water Res 92:22–37

    Article  CAS  Google Scholar 

  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–278

    Article  CAS  Google Scholar 

  • Mansouri B, Maleki A, Johari SA, Shahmoradi B, Mohammadi E, Davari B (2017) Histopathological effects of copper oxide nanoparticles on the gill and intestine of common carp (Cyprinus carpio) in the presence of titanium dioxide nanoparticles. Chem Ecol 33:295–308

    Article  CAS  Google Scholar 

  • Marchi DM, Pretti C, Gabriel B, Marques PAAP, Freitas R, Neto V (2018) An overview of graphene materials: Properties, applications and toxicity on aquatic environments. Sci Total Environ 28:1440–1456

    Article  Google Scholar 

  • Matich EK, Chavez Soria NG, Aga DS, Atilla-Gokcumen GE (2019) Applications of metabolomics in assessing ecological effects of emerging contaminants and pollutants on plants. J Hazard Mater 373:527–535

    Article  CAS  Google Scholar 

  • Minetto D, Volpi Ghirardini A, Libralato G (2016) Saltwater ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C60 engineered nanoparticles: An overview. Environ Int 92-93:189–201

    Article  CAS  Google Scholar 

  • Neelam, Chhillar AK, Rana JS (2019) Enzyme nanoparticles and their biosensing applications: A review. Anal Biochem 581:113345

    Article  CAS  Google Scholar 

  • Osmond MJ, McCall MJ (2010) Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard. Nanotoxicology 4:15–41

    Article  CAS  Google Scholar 

  • Park J, Kim S, Yoo J, Lee JS, Park JW, Jung J (2014) Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: the difference between metal ions and nanoparticles. Mar Pollut Bull 85:526–531

    Article  CAS  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109

    Article  Google Scholar 

  • Sanchez W, Burgeot T, Porcher J-M (2013) A novel “Integrated Biomarker Response” calculation based on reference deviation concept. Environ Sci Pollut Res 20:2721–2725

    Article  CAS  Google Scholar 

  • Serafim A, Company R, Lopes B, Fonseca VF, França S, Vasconcelos RP, Bebianno MJ, Cabral HN (2012) Application of an integrated biomarker response index (IBR) to assess temporal variation of environmental quality in two Portuguese aquatic systems. Ecol Indic 19:215–225

    Article  CAS  Google Scholar 

  • Shahzad K, Khan MN, Jabeen F, Kosour N, Chaudhry AS, Sohail M, Ahmad N (2019) Toxicity of zinc oxide nanoparticles (ZnO-NPs) in tilapia (Oreochromis mossambicus): tissue accumulation, oxidative stress, histopathology and genotoxicity. Int J Environ Sci Technol 16:1973–1984

    Article  CAS  Google Scholar 

  • Sharma G, Merz MK (2022) Mechanism of Zinc Transport through the Zinc Transporter YiiP. J Chem Theory Comput 18:2556–2568

    Article  CAS  Google Scholar 

  • Shaw BJ, Handy RD (2011) Physiological effects of nanoparticles on fish: A comparison of nanometals versus metal ions. Environ Int 37:1083–1097

    Article  CAS  Google Scholar 

  • Song K, Zhang WC, Sun CY, Hu XM, Wang JZ, Yao LG (2020) Dynamic cytotoxicity of ZnO nanoparticles and bulk particles to Escherichia coli: A view from unfixed ZnO particle: Zn2+ ratio. Aquat Toxicol 220:105407

    Article  CAS  Google Scholar 

  • Sousa VS, Ribau Teixeira M (2020) Metal-based engineered nanoparticles in the drinking water treatment systems: A critical review. Sci Total Environ 707:136077

    Article  CAS  Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Eds Climate change 2013: the physical science basis. Working group I contribution to the Fifh Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013).

  • Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF (2016) Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: a critical overview. Aquat Toxicol 170:162–174

    Article  CAS  Google Scholar 

  • Wang H, Burgess RM, Cantwell MG, Portis LM, Perron MM, Wu F, Ho KT (2014) Stability and aggregation of silver and titanium dioxide nanoparticles in seawater: Role of salinity and dissolved organic carbon. Environ Toxicol Chem 33:1023–1029

    Article  CAS  Google Scholar 

  • Wang J, Tang H, Zhang X, Xue X, Zhu X, Chen Y, Yang Z (2018) Mitigation of nitrite toxicity by increased salinity is associated with multiple physiological responses: A case study using an economically important model species, the juvenile obscure puffer (Takifugu obscurus). Environ Pollut 232:137–145

    Article  CAS  Google Scholar 

  • Wang J, Zhu X, Huang X, Gu L, Chen Y, Yang Z (2016) Combined effects of cadmium and salinity on juvenile Takifugu obscurus: cadmium moderates salinity tolerance; salinity decreases the toxicity of cadmium. Sci Rep 6:30968

    Article  CAS  Google Scholar 

  • Wang YY, Qin SS, Li YR, Wu GJ, Sun YF, Zhang L, Huang Y, Lyu K, Chen YF, Yang Z (2019) Combined effects of ZnO nanoparticles and toxic Microcystis on lifehistory traits of Daphnia magna. Chemosphere 233:482–492

    Article  CAS  Google Scholar 

  • Wong SWY, Leung PTY, Djurišić AB, Leung KMY (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396:609–618

    Article  CAS  Google Scholar 

  • Wu FL, Cui SK, Sun M, Xie Z, Huang W, Huang XZ, Liu LP, Hu MH, Lu WQ, Wang YJ (2018) Combined effects of ZnO NPs and seawater acidification on the haemocyte parameters of thick shell mussel Mytilus coruscus. Sci Total Environ 624:820–830

    Article  CAS  Google Scholar 

  • Wu JY, Jiang RF, Lin W, Ouyang GF (2019) Effect of salinity and humic acid on the aggregation and toxicity of polystyrene nanoplastics with different functional groups and charges. Environ Pollut 245:836–843

    Article  CAS  Google Scholar 

  • Wu SQ, Li Y, Ding WH, Xu LT, Ma Y, Zhang LB (2020) Recent advances of persistent luminescence nanoparticles in bioapplications. Nano-Micro Lett 12:70

    Article  CAS  Google Scholar 

  • Wu ZX, Zhang XM, Dromard CR, Tweedley JR, Loneragan NR (2018) Partitioning of food resources among three sympatric scorpionfish (Scorpaeniformes) in coastal waters of the northern Yellow Sea. Hydrobiologia 826:331–351

    Article  Google Scholar 

  • Yan Y, Haller S, Shapiro A, Malhotra N, Tian J, Xie Z, Malhotra D, Shapiro JI, Liu J (2012) Ouabain-stimulated trafficking regulation of the Na/K-ATPase and NHE3 in renal proximal tubule cells. Mol Cell Biochem 367(1-2):175–183

    Article  CAS  Google Scholar 

  • Yang YN, Xu SM, Xu GM, Liu R, Xu A, Chen SP, Wu LJ (2019) Effects of ionic strength on physicochemical properties and toxicity of silver nanoparticles. Sci Total Environ 647:1088–1096

    Article  CAS  Google Scholar 

  • Yang Z, Chen YF (2008) Differences in reproductive strategies between obscure puffer Takifugu obscurus and ocellated puffer Takifugu ocellatus during their spawning migration. J Appl Ichthyol 24:569–573

    Article  CAS  Google Scholar 

  • Yung MMN, Wong SWY, Kwok KWH, Liu FZ, Leung YH, Chan WT, Li XY, Djurišić AB, Leung KMY (2015) Salinity-dependent toxicities of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Aquat Toxicol 165:31–40

    Article  CAS  Google Scholar 

  • Zhang WC, Xiao BD, Fang T (2018) Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity. Chemosphere 191:324–334

    Article  CAS  Google Scholar 

  • Zhang XY, Wen HS, Qi X, Zhang KQ, Liu Y, Fan HY, Yu P, Tian Y, Li Y (2019) Na+-K+-ATPase and nka genes in spotted sea bass (Lateolabrax maculatus) and their involvement in salinity adaptation. Comp Biochem Phys A 235:69–81

    Article  CAS  Google Scholar 

  • Zhao X, Wang S, Wu Y, You H, Lv L (2013) Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol 136-137:49–59

    Article  CAS  Google Scholar 

  • Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2009) The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20:195103

    Article  Google Scholar 

Download references

Funding

The authors declare that this research was financially supported by the National Natural Science Foundation of China (Nos. 52121006, U2240207), and the National Key Research and Development Program of China (No. 2022YFC3203900).

Author information

Authors and Affiliations

Authors

Contributions

QC and YL designed the investigation; JW did experiments; YL and JW wrote the main manuscript text; JW, SH, and HY prepared figures and tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to Qiuwen Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Authors declare that the animal experimental processes were carried out following the instructions of Institutional Animal Care and Use Committees (IACUC), and conducted in Nanjing Normal University with permission (number: SYXK2015-0028).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Wang, J., He, S. et al. Antioxidant response to ZnO nanoparticles in juvenile Takifugu obscurus: protective effects of salinity. Ecotoxicology 33, 85–93 (2024). https://doi.org/10.1007/s10646-023-02726-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-023-02726-8

Keywords

Navigation