Skip to main content
Log in

A high-precision measuring system for atmospheric visibility based on a multi-reflection cell

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Visibility high-precision measurement has a wide range of applications in the field of aviation and navigation. This paper proposes and designs a visibility measuring system based on a multi-reflection cell. In terms of the definition of the meteorological optical range (MOR), this system calculates the distance at which the beam is attenuated to 5% by means of multiple reflections with a long propagation distance, so as to obtain accurate atmospheric visibility. Different from the short-distance ring-down cavity with a length of 0.5 m, the length of the multi-reflection cell of this system can reach more than 10 m. Compared with the traditional transmissive method, the calculation results are more in line with the real situation of the atmospheric environment because the atmospheric non-uniformity and inversion parameters are considered. Experiments show that this method has better robustness and can stably measure atmospheric visibility under the condition of limited equipment space with an error of 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Du, K., Mu, C., Deng, J.J., Yuan, F.: Study on atmospheric visibility variations and the impacts of meteorological parameters using high temporal resolution data: an application of environmental internet of things in China. Int. J. Sustain. Dev. World Ecol. 20(3), 238–247 (2013)

    Article  Google Scholar 

  2. Ranasinghe, A., Sornkarn, N., Dasgupta, P.: Salient feature of haptic-based guidance of people in low visibility environment using hard reins. IEEE Trans. Cybern. 46(2), 568–579 (2016)

    Article  PubMed  Google Scholar 

  3. Mackin, A., Noland, K.C., Bull, D.R.: The visibility estimation and joint inpainting of Lidar depth maps. IEEE international Conference on Image Processing, 3503–3507 (2016)

  4. Wang, S., Anguo, Z.: Analysis on variation trend and influencing factors of visibility in atmosphere. Modern Agric. Sci. Technol. 4, 235–236 (2013)

    CAS  Google Scholar 

  5. Seliga, T. A., Hazen, D. A., Salcedo L.: Possible enhancements of airport operations based on runway visual range visibility measurements. In: 2009 IEEE/AIAA 28th Digital Avionics Systems Conference, pp. 4.E.1-1–4.E.1–13 (2009)

  6. Peng, P., Li, C.: Visibility measurements using two-angle forward scattering by liquid droplets. J. Appl. Opt. 55(15), 3903–3908 (2016)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Wu, Y., Zhang, K., Yang, Y., Yang, X., Chen, S., Wang, B.: Research on forward scattering visibility sensor. IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (2021)

  8. Kreid, D.K.: Atmospheric visibility measurement by a modulated cw Lidar. Appl. Opt. 15(7), 1823–1831 (1976)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wang, Q., Bu, L., Li, T., Xu, J., Zhu, S., Liu, J.: Alidation of an airborne high spectral resolution Lidar and its measurement for aerosol optical properties over Qinhuangdao, China. Opt. Express 28(17), 24471–24488 (2020)

    Article  ADS  PubMed  Google Scholar 

  10. Wang, Z., Tao, Z., Liu, D., Wu, D., Xie, C., Wang, Y.: New experimental method for Lidar overlap factor using a CCD side-scatter technique. Opt. Lett. 40(8), 1749–1752 (2015)

    Article  ADS  PubMed  Google Scholar 

  11. Tao, Z., Liu, D., Wang, Z., Ma, M., Zhang, Q., Xie, C., Bo, G., Hu, S., Wang, Y.: Measurements of aerosol phase function and vertical backscattering coefficient using a charge-coupled device side-scatter Lidar. Opt. Express 22(1), 1127–1134 (2014)

    Article  ADS  PubMed  Google Scholar 

  12. Han, Y., Gao, P., Huang, J., Zhang, T., Zhuang, J., Hu, M., Wu, Y.: “Ground-based synchronous optical instrument for measuring atmospheric visibility and turbulence intensity”, theories, design and experiments. Opt. Express 26(6), 6833–6850 (2014)

    Article  ADS  Google Scholar 

  13. Xiong, X., Liu, C., Jiang, L., Li, M., Ma, Y., Tai, H.: Effects of multiple scattering on visibility measurement error of laser-transmissometer. J. Optoelectron. Laser 26(10), 2037–2044 (2015)

    Google Scholar 

  14. Kaurila, T., Hagard, A., Person, R.: Aerosol extinction model based on measurements at two sites in Sweden. J. Appl. Opt. 45(26), 650–6761 (2006)

    Google Scholar 

  15. Wang, J., Liu, X., Lei, M., Ruan, S., Nie, K., Liu, J., Wei, T., Miao, Y.: Digital photography visiometer system and comparative experiment. Acta Electron. Sin. 42(11), 2299–2302 (2014)

    Google Scholar 

  16. Wang, J.: The research in digital photograph visibility device system. In: The 2nd International Conference on Information Science and Engineering, pp. 7052–7055 (2010)

  17. Li, C., Guan, Y., Ma, Q.: Specifications for surface meteorological observation. Part3: measurement of meteorological visibility, pp. QX/T 47-2007 (2007)

  18. Ma, Y.: High-Precision Apparatus for Visibility and Present Weather by British BIRAL HSS. Meteorological Hydrological & Marine Instrument, pp. 02, (2005)

  19. Middleton, W.E.K.: Vision through the Atmosphere. In: Bartels, J. (ed.) Geophysics. Springer, Berlin Heidelberg, Berlin Heidelberg (1957)

    Google Scholar 

  20. Organization, W.M.: Guide of meteorological instruments and methods of observation. Eos Trans. 55, 8–9 (2008)

    Google Scholar 

  21. Li, J., Wang, W., Duan, M., Wei, J.: Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams. Opt. Express 24(18), 20413–20423 (2016)

    Article  ADS  PubMed  Google Scholar 

  22. Chen, C., Yang, H., Tong, S., Lou, Y.: Changes in orbital-angular-momentum modes of a propagated vortex Gaussian beam through weak-to-strong atmospheric turbulence. Opt. Express 24(7), 6959–6975 (2016)

    Article  ADS  PubMed  Google Scholar 

  23. Nebuloni, R., Verdugo, E.: FSO path loss model based on the visibility. IEEE Photonics J. 14(2), 7318609 (2022)

    Article  Google Scholar 

  24. Kim, I. I., McArthur, B., Korevaar, E.: Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. in Proc. SPIE, pp. 26–37, (2001)

  25. Nebuloni, R.: Empirical relationships between extinction coefficient and visibility in fog. Appl. Opt. 44(18), 3795–3804 (2005)

    Article  ADS  PubMed  Google Scholar 

  26. Grabner, M., Kvicera, V.: The wavelength dependent model of extinction in fog and haze for free space optical communication. Opt. Express 19(4), 3379–3386 (2011)

    Article  ADS  PubMed  Google Scholar 

  27. Al Naboulsi, M.: Fog attenuation prediction for optical and infrared waves. Opt. Eng. 43(2), 319–329 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  28. Bulatov, V., Fisher, M., Schechter, I.: Aerosol Analysis by cavity- spectroscopy. Anal. Chim. Acta 466, 1–9 (2002)

    Article  CAS  Google Scholar 

  29. Pettersson, A., Lovejoy, E.R., Brock, C.A., Brown, S.S., Ravishankara, A.R.: Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring-down spectroscopy. J. Aerosol Sci. 35(995), 1011 (2004)

    Google Scholar 

  30. Mossmuller, H., Varma, R., Arnott, W.P.: Cavity ring-down and cavity-enhanced detection techniques for the measurement for aerosol extinction. Aerosol Sci. Tech. 39, 30–39 (2005)

    Article  ADS  Google Scholar 

  31. Huang, N.: “The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A (1998). https://doi.org/10.1098/rspa.1998.0193

    Article  Google Scholar 

  32. Huang, N.: The age of large amplitude coastal seiches on Caribbean coast of Puerto Rico. Phys. Oceanogr. 30(8), 405–409 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by “Scientific Research Program of Tianjin Municipal Education Commission (2021KJ033)” and “National Key R&D Program of China(2020YFB1600101 and 2020YFB1600103).”

Funding

Natural Science Foundation of Tianjin Municipal Science and Technology Commission, 2021KJ033, Meng Li

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Liu, S., Ma, Y. et al. A high-precision measuring system for atmospheric visibility based on a multi-reflection cell. Opt Rev 31, 8–16 (2024). https://doi.org/10.1007/s10043-023-00849-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-023-00849-1

Keywords

Navigation