Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The contribution of winds from star clusters to the Galactic cosmic-ray population

Abstract

Cosmic rays (CR) are energetic nuclei that permeate the entire Galactic disk. Their existence requires the presence of powerful particle accelerators. While Galactic supernova explosions may supply the required energy, there is growing evidence that they cannot explain all of the observed properties of cosmic rays, such as their maximum particle energy and isotopic composition. Among Galactic objects, winds from stellar clusters meet the energetic requirement and provide a suitable environment for particle acceleration. The recent detection of some of these objects in γ rays confirms that they indeed harbour high-energy particles. However, as most supernovae explode inside stellar clusters, it is difficult to distinguish the contribution of winds to particle acceleration. Here we report the detection of young star clusters in the nearby Vela molecular ridge star-forming region. The young age of the systems guarantees an unbiased estimate of the stellar CR luminosity free from any supernova or pulsar contamination and allows us to draw conclusions on the acceleration efficiency and the total power supplied by these objects. We demonstrate that much more than 1% of the wind mechanical power is converted into CRs and consequently conclude that a small but non-negligible fraction, ~1–10% of the CR population, is contributed by stellar clusters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Test statistic map of the analysed sources.
Fig. 2: Spectral energy distributions of the targeted star clusters.

Similar content being viewed by others

Data availability

The authors made use of publicly available data that can be retrieved at https://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi. Other data related to this work can be found on figshare: https://doi.org/10.6084/m9.figshare.24467155. Source data are provided with this paper.

Code availability

The authors made use of publicly available analysis software. In particular: fermipy v.1.0.2 available at https://github.com/fermiPy/fermipy/blob/master/docs/index.rst and naima available at https://github.com/zblz/naima.

References

  1. Seo, J., Kang, H. & Ryu, D. The contribution of stellar winds to cosmic ray production. J. Korean Astron. Soc. 51, 37–48 (2018).

    ADS  Google Scholar 

  2. Strong, A. W. et al. Global cosmic-ray related luminosity and energy budget of the Milky Way. Astrophys. J. Lett. 722, L58–L63 (2010).

    Article  ADS  Google Scholar 

  3. Cesarsky, C. J. & Montmerle, T. Gamma rays from active regions in the galaxy: the possible contribution of stellar winds. Space Sci. Rev. 36, 173–193 (1983).

    Article  ADS  Google Scholar 

  4. Casse, M. & Paul, J. A. On the stellar origin of the Ne-22 excess in cosmic rays. Astrophys. J. 258, 860–863 (1982).

  5. Binns, W. R. et al. Cosmic-Ray Neon, Wolf-Rayet Stars, and the superbubble origin of Galactic Cosmic Rays. Astrophys. J. 634, 351–364 (2005).

  6. Boschini, M. J. et al. Inference of the local interstellar spectra of cosmic-ray nuclei Z ≤ 28 with the GALPROP-HELMOD Framework. Astrophys. J., Suppl. Ser. 250, 27 (2020).

    Article  ADS  Google Scholar 

  7. Aharonian, F., Yang, R. & de Oña Wilhelmi, E. Massive stars as major factories of Galactic cosmic rays. Nat. Astron. 3, 561–567 (2019).

    Article  ADS  Google Scholar 

  8. Abeysekara, A. U. et al. HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon. Nat. Astron. 5, 465–471 (2021).

  9. Cao, Z. et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 594, 33–36 (2021).

    Article  ADS  Google Scholar 

  10. Higdon, J. C., Lingenfelter, R. E., Higdon, J. C. & Lingenfelter, R. E. OB associations, supernova-generated superbubbles, and the source of cosmic rays. Astrophys. J. 628, 738–749 (2005).

    Article  ADS  Google Scholar 

  11. Bykov, A. Nonthermal particles and photons in starburst regions and superbubbles. Astron. Astrophys. Rev. 22, 77 (2015).

    Article  ADS  Google Scholar 

  12. Morlino, G., Blasi, P., Peretti, E. & Cristofari, P. Particle acceleration in winds of star clusters. Mon. Notices Royal Astron. Soc. 504, 6096–6105 (2021).

    Article  ADS  Google Scholar 

  13. Vieu, T., Gabici, S., Tatischeff, V. & Ravikularaman, S. Cosmic ray production in superbubbles. Mon. Notices Royal Astron. Soc. 512, 1275–1293 (2022).

    Article  ADS  Google Scholar 

  14. Aharonian, F. et al. A deep spectromorphological study of the γ -ray emission surrounding the young massive stellar cluster Westerlund 1. Astron. Astrophys. 666, A124 (2022).

    Article  Google Scholar 

  15. Wright, N. J., Drew, J. E. & Mohr-Smith, M. The massive star population of Cygnus OB2. Mon. Notices Royal Astron. Soc. 449, 741–760 (2015).

  16. Mestre, E. et al. Probing the hadronic nature of the gamma-ray emission associated with Westerlund 2. Mon. Notices Royal Astron. Soc. 505, 2731–2740 (2021).

  17. Maurin, G., Marcowith, A., Komin, N., Krayzel, F. & Lamanna, G. Embedded star clusters as sources of high-energy cosmic rays modelling and constraints. Astron. Astrophys. 591, A71 (2016).

  18. Ekström, S. et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M at solar metallicity (Z = 0.014). Astron. Astrophys. 537, A146 (2012).

  19. Wood, D. O. S., Churchwell, E. & Observatory, W. Massive stars embedded in molecular clouds: their population and distribution in the galaxy. Astrophys. J. 340, 265–272 (1989).

    Article  ADS  Google Scholar 

  20. Mascoop, J. L. et al. The Galactic H ii region luminosity function at radio and infrared wavelengths. Astrophys. J. 910, 159 (2021).

    Article  ADS  Google Scholar 

  21. Anderson, L. D. et al. The WISE catalog of Galactic HII regions. Astrophys. J. 212, 1 (2014).

  22. Rodgers, A. W., Campbell, C. T. & Whiteoak, J. B. A catalogue of H α-emission regions in the Southern Milky Way. Mon. Notices Royal Astron. Soc. 121, 103–110 (1960).

    Article  ADS  Google Scholar 

  23. Abdollahi, S. et al. Incremental Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. 260, 53 (2022).

  24. Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 129, 1993–2006 (2005).

  25. Malyshev, D. V. & Bhat, A. Multi-class classification of Fermi-LAT sources with hierarchical class definition. Mon. Notices Royal Astron. Soc. 521, 6195–6209 (2023).

    Article  ADS  Google Scholar 

  26. Wolk, S. J., Bourke, T. L. & Vigil, M. Handbook of Star Forming Regions Vol. II (Astronomical Society of the Pacific, 2008).

  27. Wolk, S. J., Bourke, T. L., Smith, R. K., Spitzbart, B. & Alves, J. O. Discovery of nonthermal X-ray emission from the embedded massive star-forming region RCW 38. Astrophys. J. 580, 161–165 (2002).

    Article  ADS  Google Scholar 

  28. Zucker, C. et al. A compendium of distances to molecular clouds in the Star Formation Handbook. Astron. Astrophys. 633, A51 (2020).

    Article  Google Scholar 

  29. Ellerbroek, L. E. et al. Rcw36: Characterizing the outcome of massive star formation. Astron. Astrophys. 558, A102 (2013).

  30. Prisinzano, L. et al. Astrophysics low-mass star formation and subclustering in the H II regions RCW 32, 33, and 27 of the Vela Molecular Ridge. A photometric diagnostics for identifying M-type stars. Astron. Astrophys. 617, 63 (2018).

    Article  Google Scholar 

  31. Massi, F., Lorenzetti, D. & Giannini, T. Star formation in the Vela molecular clouds. V. Young stellar objects and star clusters towards the C-cloud. Astron. Astrophys. 399, 147 (2003).

    Article  ADS  Google Scholar 

  32. Bik, A. et al. Sequential star formation in RCW 34: a spectroscopic census of the stellar content of high-mass star-forming regions. Astrophys. J. 713, 883–899 (2010).

  33. Weaver, R. et al. Interstellar bubbles. II. Structure and evolution. Astrophys. J. 218, 377–395 (1977).

    Article  ADS  Google Scholar 

  34. Lallement, R., Vergely, J. L., Babusiaux, C. & Cox, N. L. Updated Gaia -2MASS 3D maps of Galactic interstellar dust. Astron. Astrophys. 661, A147 (2022).

  35. Yadav, N., Mukherjee, D., Sharma, P. & Nath, B. B. How multiple supernovae overlap to form superbubbles. Mon. Notices Royal Astron. Soc. 465, 1720–1740 (2017).

    Article  ADS  Google Scholar 

  36. Cantò, J., Raga, A. C. & Rodriguez, L. F. The hot, diffuse gas in a dense cluster of massive stars. Astrophys. J. 536, 896–901 (2000).

    Article  ADS  Google Scholar 

  37. Bourke, T. L., Myers, P. C., Robinson, G. & Hyland, A. R. New OH Zeeman measurements of magnetic field strengths in molecular clouds. Astrophys. J. 554, 916–932 (2001).

    Article  ADS  Google Scholar 

  38. Badmaev, D. V., Bykov, A. M. & Kalyashova, M. E. Inside the core of a young massive star cluster: 3D MHD simulations. Mon. Notices Royal Astron. Soc. 517, 2818–2830 (2022).

    Article  ADS  Google Scholar 

  39. Padovani, M., Marcowith, A., Sánchez-Monge, Á., Meng, F. & Schilke, P. Non-thermal emission from cosmic rays accelerated in H II regions. Astron. Astrophys. 630, A72 (2019).

    Article  ADS  Google Scholar 

  40. Zabalza, V. Naima: A Python package for inference of relativistic particle energy distributions from observed nonthermal spectra. In Proc. 34th International Cosmic Ray Conference (Proceedings of Science, 2015).

  41. Aharonian, F. A. Very High Energy Cosmic Gamma Radiation: A Crucial Window on the Extreme Universe (World Scientific Publishing, 2004).

  42. Tatischeff, V., Raymond, J. C., Duprat, J., Gabici, S. & Recchia, S. The origin of Galactic cosmic rays as revealed by their composition. Mon. Notices Royal Astron. Soc. 508, 1321–1345 (2021).

    Article  ADS  Google Scholar 

  43. Ackermann, M. et al. Search for extended sources in the galactic plane using six years of Fermi-Large Area Telescope pass 8 data above 10 GeV. Astrophys. J. 843, 139 (2017).

    Article  ADS  Google Scholar 

  44. Mattox, J. R. et al. The likelihood analysis of EGRET data. Astrophys. J. 461, 396 (1996).

    Article  ADS  Google Scholar 

  45. The Fermi-LAT collaboration. Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. 242, 33 (2019).

  46. Vladimirov, A. E. et al. GALPROP WebRun: an internet-based service for calculating galactic cosmic ray propagation and associated photon emissions. Computer Phys. Commun. 182, 1156–1161 (2011).

    Article  ADS  Google Scholar 

  47. Yusifov, I. & Kucuk, I. Revisiting the radial distribution of pulsars in the Galaxy. Astron. Astrophys. 422, 545–553 (2004).

    Article  ADS  Google Scholar 

  48. Dame, T. M., Hartmann, D. & Thaddeus, P. The Milky Way in molecular clouds: a new complete CO survey. Astrophys. J. 547, 792–813 (2000).

    Article  ADS  Google Scholar 

  49. Ben Bekhti, N. et al. HI4PI: a full-sky Hi survey based on EBHIS and GASS. Astron. Astrophys. 594, A116 (2016).

  50. Ade, P., Aghanim, N., Arnaud, M. & Ashdown, M. Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the ‘dark gas’ in our Galaxy. Astron. Astrophys. 536, 16 (2011).

    Google Scholar 

  51. Ballet, J., Bruel, P., Burnett, T. H., Lott, B. & The Fermi-LAT collaboration. Fermi Large Area Telescope Fourth Source Catalog Data Release 4 (4FGL-DR4). Preprint at https://doi.org/10.48550/arXiv.2307.12546 (2023).

  52. Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H 2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).

    Article  ADS  Google Scholar 

  53. Acero, F. et al. Development of the model of Galactic interstellar emission for standard point-source analysis of Fermi Large Area Telescope data. Astrophys. J. 223, 26 (2016).

  54. Park, J., Caprioli, D. & Spitkovsky, A. Simultaneous acceleration of protons and electrons at nonrelativistic quasiparallel collisionless shocks. Phys. Rev. Lett. 114, 085003 (2015).

    Article  ADS  Google Scholar 

  55. Kafexhiu, E., Aharonian, F., Taylor, A. M. & Vila, G. S. Parametrization of gamma-ray production cross-sections for pp interactions in a broad proton energy range from the kinematic threshold to PeV energies. Phys. Rev. D. 90, 123014 (2014).

    Article  ADS  Google Scholar 

  56. Massi, F. et al. Dense cores and star formation in the giant molecular cloud Vela C. Astron. Astrophys. 628, A110 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge J. Hinton, E. Amato, G. Morlino, R. Tuffs and M. Lemoine-Goumard for the suggestions and discussion. G.P. and S.G. are supported by Agence Nationale de la Recherche (grant ANR-21-CE31-0028). S.C. acknowledges support from the Polish Science Centre grant DEC-2017/27/B/ST9/02272.

Author information

Authors and Affiliations

Authors

Contributions

G.P. led the data analysis, proposed the interpretation and produced the manuscript and its figures. S.C. proposed the target region as a case study. V.B. cross-checked the Fermi-LAT analysis. G.P., S.G., S.C. and F.A. gave significant inputs on data interpretation. All authors participated in the discussions and editing of the paper.

Corresponding author

Correspondence to Giada Peron.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Source data

Source Data Fig. 1

Spectral points. This data file contains the spectral energy distributions of the clusters discussed in the paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peron, G., Casanova, S., Gabici, S. et al. The contribution of winds from star clusters to the Galactic cosmic-ray population. Nat Astron 8, 530–537 (2024). https://doi.org/10.1038/s41550-023-02168-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02168-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing