Skip to main content
Log in

Spin-polarized equal-spin Andreev reflection in antiferromagnetic graphene

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The transport properties of the graphene-based antiferromagnet/insulator/ferromagnet/superconductor junction with noncollinear magnetic moments are theoretically investigated under the Bogoliubov-de Gennes equation. By introducing a mass term into the antiferromagnetic region, the spin-polarized equal-spin Andreev reflection (EAR) can be achieved for all voltages in the subgap region, free from any interference from the opposite-spin Andreev reflection (OAR). The transition from the retro EAR to the specular EAR can be realized by adjusting the Fermi level within the antiferromagnetic region. The perfect EAR can be obtained, suggesting an efficient equal-spin pairing correlation. Furthermore, we note that the EAR exhibits magnetoisotropy with an in-plane ferromagnetic exchange field, which is opposite to the results in a ferromagnet/ferromagnet/superconductor junction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statements

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All relevant data for this study are presented in the main text of the manuscript. Therefore, there is no data or the data will not be deposited.]

References

  1. A. Andreev et al., Sov. Phys. JETP 20, 1490 ( 1965), http://jetp.ras.ru/cgi-bin/dn/e_020_06_1490.pdf

  2. C.W.J. Beenakker, Phys. Rev. Lett. 97, 067007 (2006). https://doi.org/10.1103/PhysRevLett.97.067007

    Article  ADS  CAS  PubMed  Google Scholar 

  3. W.-T. Lu, Q.-F. Sun, Phys. Rev. B 104, 045418 (2021). https://doi.org/10.1103/PhysRevB.104.045418

    Article  ADS  CAS  Google Scholar 

  4. Z.P. Niu, J. Phys. 31, 485701 (2019). https://doi.org/10.1088/1361-648X/ab351b

    Article  CAS  Google Scholar 

  5. W.-Y. Li, Q.-P. Wu, Z.-F. Liu, F.-F. Liu, and X.-B. Xiao, J. Appl. Phys. 133, ( 2023), https://doi.org/10.1063/5.0141906

  6. S.-C. Zhao, L. Gao, Q. Cheng, Q.-F. Sun, Phys. Rev. B 108, 134511 (2023). https://doi.org/10.1103/PhysRevB.108.134511

    Article  ADS  CAS  Google Scholar 

  7. L. Gao, Q. Cheng, Q.-F. Sun, Phys. Rev. B 108, 024504 (2023). https://doi.org/10.1103/PhysRevB.108.024504

    Article  ADS  CAS  Google Scholar 

  8. K. Halterman, O.T. Valls, M. Alidoust, Phys. Rev. Lett. 111, 046602 (2013). https://doi.org/10.1103/PhysRevLett.111.046602

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Z.-Y. Zhang, J. Phys. 21, 095302 (2009). https://doi.org/10.1088/0953-8984/21/9/095302

    Article  CAS  Google Scholar 

  10. C.-T. Wu, O.T. Valls, K. Halterman, Phys. Rev. B 86, 014523 (2012). https://doi.org/10.1103/PhysRevB.86.014523

    Article  ADS  CAS  Google Scholar 

  11. M. Alidoust, K. Halterman, Phys. Rev. B 97, 064517 (2018). https://doi.org/10.1103/PhysRevB.97.064517

    Article  ADS  CAS  Google Scholar 

  12. Z. Pajović, M. Božović, Z. Radović, J. Cayssol, A. Buzdin, Phys. Rev. B 74, 184509 (2006). https://doi.org/10.1103/PhysRevB.74.184509

    Article  ADS  CAS  Google Scholar 

  13. Y. Wei, T. Liu, C. Huang, Y.C. Tao, F. Qi, Phys. Rev. Res. 3, 033131 (2021). https://doi.org/10.1103/PhysRevResearch.3.033131

    Article  CAS  Google Scholar 

  14. Z.P. Niu, D.Y. Xing, Phys. Rev. Lett. 98, 057005 (2007). https://doi.org/10.1103/PhysRevLett.98.057005

    Article  ADS  CAS  PubMed  Google Scholar 

  15. J. Yi-Qun, N. Zhi-Ping, F. Cui-Di, X. Ding-Yu, Chin. Phys. Lett. 25, 691 (2008). https://doi.org/10.1088/0256-307X/25/2/091

    Article  ADS  Google Scholar 

  16. W.-T. Lu, Q.-F. Sun, Q. Cheng, Phys. Rev. B 105, 125425 (2022). https://doi.org/10.1103/PhysRevB.105.125425

    Article  ADS  CAS  Google Scholar 

  17. T. Jungwirth, X. Marti, P. Wadley, J. Wunderlich, Nat. Nanotechnol. 11, 231 (2016). https://doi.org/10.1103/RevModPhys.90.015005

    Article  ADS  CAS  PubMed  Google Scholar 

  18. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak, Rev. Modern Phys. 90, 015005 (2018). https://doi.org/10.1103/RevModPhys.90.015005

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. M.B. Jungfleisch, W. Zhang, A. Hoffmann, Phys. Lett. A 382, 865 (2018). https://doi.org/10.1016/j.physleta.2018.01.008

    Article  ADS  CAS  Google Scholar 

  20. D. Xiong, Y. Jiang, K. Shi, A. Du, Y. Yao, Z. Guo, D. Zhu, K. Cao, S. Peng, W. Cai et al., Fundamental Res. 2, 522 (2022). https://doi.org/10.1016/j.fmre.2022.03.016

    Article  CAS  Google Scholar 

  21. B.M. Andersen, I.V. Bobkova, P.J. Hirschfeld, Y.S. Barash, Phys. Rev. B 72, 184510 (2005). https://doi.org/10.1103/PhysRevB.72.184510

    Article  ADS  CAS  Google Scholar 

  22. L. Bulaevskii, R. Eneias, A. Ferraz, Phys. Rev. B 95, 104513 (2017). https://doi.org/10.1103/PhysRevB.95.104513

    Article  ADS  Google Scholar 

  23. B.M. Andersen, I.V. Bobkova, P.J. Hirschfeld, Y.S. Barash, Phys. Rev. Lett. 96, 117005 (2006). https://doi.org/10.1103/PhysRevLett.96.117005

    Article  ADS  CAS  PubMed  Google Scholar 

  24. A. Kamra, A. Rezaei, W. Belzig, Phys. Rev. Lett. 121, 247702 (2018). https://doi.org/10.1103/PhysRevLett.121.247702

    Article  ADS  CAS  PubMed  Google Scholar 

  25. G.A. Bobkov, I.V. Bobkova, A.M. Bobkov, A. Kamra, Phys. Rev. B 106, 144512 (2022). https://doi.org/10.1103/PhysRevB.106.144512

    Article  ADS  CAS  Google Scholar 

  26. S. Chourasia, L.J. Kamra, I.V. Bobkova, A. Kamra, Phys. Rev. B 108, 064515 (2023). https://doi.org/10.1103/PhysRevB.108.064515

    Article  ADS  CAS  Google Scholar 

  27. L.G. Johnsen, S.H. Jacobsen, J. Linder, Phys. Rev. B 103, L060505 (2021). https://doi.org/10.1103/PhysRevB.103.L060505

    Article  ADS  CAS  Google Scholar 

  28. C. Bell, E.J. Tarte, G. Burnell, C.W. Leung, D.-J. Kang, M.G. Blamire, Phys. Rev. B 68, 144517 (2003). https://doi.org/10.1103/PhysRevB.68.144517

    Article  ADS  CAS  Google Scholar 

  29. P. Komissinskiy, G.A. Ovsyannikov, I.V. Borisenko, Y.V. Kislinskii, K.Y. Constantinian, A.V. Zaitsev, D. Winkler, Phys. Rev. Lett. 99, 017004 (2007). https://doi.org/10.1103/PhysRevLett.99.017004

    Article  ADS  CAS  PubMed  Google Scholar 

  30. H.B. Heersche, P. Jarillo-Herrero, J.B. Oostinga, L.M. Vandersypen, A.F. Morpurgo, Solid State Commun. 143, 72 (2007). https://doi.org/10.1016/j.ssc.2007.02.044

    Article  ADS  CAS  Google Scholar 

  31. C. Ojeda-Aristizabal, M. Ferrier, S. Guéron, H. Bouchiat, Phys. Rev. B 79, 165436 (2009). https://doi.org/10.1103/PhysRevB.79.165436

    Article  ADS  CAS  Google Scholar 

  32. Z. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Zhang, A.H. MacDonald, Q. Niu, Phys. Rev. Lett. 112, 116404 (2014). https://doi.org/10.1103/PhysRevLett.112.116404

    Article  ADS  CAS  PubMed  Google Scholar 

  33. M. Kharitonov, Phys. Rev. B 86, 195435 (2012). https://doi.org/10.1103/PhysRevB.86.195435

    Article  ADS  CAS  Google Scholar 

  34. X. Zhou, M. Lan, Y. Ye, Y. Feng, X. Zhai, L. Gong, H. Wang, J. Zhao, Y. Xu, Europhys. Lett. 125, 37001 (2019). https://doi.org/10.1209/0295-5075/125/37001

    Article  ADS  CAS  Google Scholar 

  35. D. Soriano, J. Fernández-Rossier, Phys. Rev. B 85, 195433 (2012). https://doi.org/10.1103/PhysRevB.85.195433

    Article  ADS  CAS  Google Scholar 

  36. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard et al., Nat. Nanotechnol. 5, 722 (2010). https://doi.org/10.1038/nnano.2010.172

    Article  ADS  CAS  PubMed  Google Scholar 

  37. J. Jung, A.M. DaSilva, A.H. MacDonald, S. Adam, Nat. Commun. 6, 6308 (2015). https://doi.org/10.1038/ncomms7308

    Article  ADS  CAS  PubMed  Google Scholar 

  38. G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Phys. Rev. B 76, 073103 (2007). https://doi.org/10.1103/PhysRevB.76.073103

    Article  ADS  CAS  Google Scholar 

  39. Q.-F. Liang, L.-H. Wu, X. Hu, New J. Phys. 15, 063031 (2013). https://doi.org/10.1088/1367-2630/15/6/063031

  40. M. Ezawa, Phys. Rev. Lett. 114, 056403 (2015). https://doi.org/10.1103/PhysRevLett.114.056403

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Y. Xu, J. Ma, G. Jin, Phys. Rev. B 104, 045416 (2021). https://doi.org/10.1103/PhysRevB.104.045416

    Article  ADS  CAS  Google Scholar 

  42. K. Zollner, J. Fabian, Phys. Rev. B 106, 035137 (2022). https://doi.org/10.1103/PhysRevB.106.035137

    Article  ADS  CAS  Google Scholar 

  43. Z. Wang, C. Tang, R. Sachs, Y. Barlas, J. Shi, Phys. Rev. Lett. 114, 016603 (2015). https://doi.org/10.1103/PhysRevLett.114.016603

    Article  ADS  CAS  PubMed  Google Scholar 

  44. K. Zollner, M. Gmitra, T. Frank, J. Fabian, Phys. Rev. B 94, 155441 (2016). https://doi.org/10.1103/PhysRevB.94.155441

    Article  ADS  CAS  Google Scholar 

  45. M. Feigel’man, M. Skvortsov, K. Tikhonov, Solid State Commun. 149, 1101 (2009)

    Article  ADS  Google Scholar 

  46. C.W.J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008). https://doi.org/10.1103/RevModPhys.80.1337

    Article  ADS  CAS  Google Scholar 

  47. M.F. Jakobsen, A. Brataas, A. Qaiumzadeh, Phys. Rev. Lett. 127, 017701 (2021). https://doi.org/10.1103/PhysRevLett.127.017701

    Article  ADS  CAS  PubMed  Google Scholar 

  48. P.-G. De Gennes, Superconductivity of metals and alloys ( CRC press, 2018)

  49. R. Beiranvand, H. Hamzehpour, M. Alidoust, Phys. Rev. B 96, 161403 (2017). https://doi.org/10.1103/PhysRevB.96.161403

    Article  ADS  Google Scholar 

  50. H. Li, Phys. Rev. B 94, 075428 (2016). https://doi.org/10.1103/PhysRevB.94.075428

    Article  ADS  CAS  Google Scholar 

  51. G.E. Blonder, M. Tinkham, T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982). https://doi.org/10.1103/PhysRevB.25.4515

    Article  ADS  CAS  Google Scholar 

  52. Y.-F. Hsu, G.-Y. Guo, Phys. Rev. B 81, 045412 (2010). https://doi.org/10.1103/PhysRevB.81.045412

    Article  ADS  CAS  Google Scholar 

  53. S. Sarkar, A. Saha, S. Gangadharaiah, Superlattices Microstruct. 123, 436 (2018). https://doi.org/10.1016/j.spmi.2018.09.032

    Article  ADS  CAS  Google Scholar 

  54. J. Linder, A. Sudbø, Phys. Rev. B 77, 064507 (2008). https://doi.org/10.1103/PhysRevB.77.064507

    Article  ADS  CAS  Google Scholar 

  55. C. Bai, Y. Yang, Phys. Lett. A 374, 882 (2010). https://doi.org/10.1016/j.physleta.2009.11.086

    Article  ADS  CAS  Google Scholar 

  56. T. Yokoyama, J. Linder, Phys. Rev. B 83, 081418 (2011). https://doi.org/10.1103/PhysRevB.83.081418

    Article  ADS  CAS  Google Scholar 

  57. T. Yokoyama, Y. Tanaka, N. Nagaosa, Phys. Rev. B 81, 121401 (2010). https://doi.org/10.1103/PhysRevB.81.121401

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R &D Program of China (Grant No. 2022YFA1403601).

Author information

Authors and Affiliations

Authors

Contributions

WY: derivation of equations, numerical calculations, writing, and reviewing. WZ: reviewing. YH: reviewing. RS: writing, and reviewing.

Corresponding author

Correspondence to R. Shen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Zeng, W., Huang, Y. et al. Spin-polarized equal-spin Andreev reflection in antiferromagnetic graphene. Eur. Phys. J. B 97, 4 (2024). https://doi.org/10.1140/epjb/s10051-023-00647-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00647-3

Navigation