Semin Respir Crit Care Med 2024; 45(02): 158-168
DOI: 10.1055/s-0043-1777770
Review Article

Microbiology of Severe Community-Acquired Pneumonia and the Role of Rapid Molecular Techniques

Chiagozie I. Pickens
1   Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
,
Catherine A. Gao
1   Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
,
Luisa Morales-Nebreda
1   Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
,
Richard G. Wunderink
1   Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
› Author Affiliations

Abstract

The microbiology of severe community acquired pneumonia (SCAP) has implications on management, clinical outcomes and public health policy. Therefore, knowledge of the etiologies of SCAP and methods to identify these microorganisms is key. Bacteria including Streptococcus pneumoniae, Staphylococcus aureus and Enterobacteriaceae continue to be important causes of SCAP. Viruses remain the most commonly identified etiology of SCAP. Atypical organisms are also important etiologies of SCAP and are critical to identify for public health. With the increased number of immunocompromised individuals, less common pathogens may also be found as the causative agent of SCAP. Traditional diagnostic tests, including semi-quantitative respiratory cultures, blood cultures and urinary antigens continue to hold an important role in the evaluation of patients with SCAP. Many of the limitations of the aforementioned tests are addressed by rapid, molecular diagnostic tests. Molecular diagnostics utilize culture-independent technology to identify species-specific genetic sequences. These tests are often semi-automated and provide results within hours, which provides an opportunity for expedient antibiotic stewardship. The existing literature suggests molecular diagnostic techniques may improve antibiotic stewardship in CAP, and future research should investigate optimal methods for implementation of these assays into clinical practice.



Publication History

Article published online:
09 January 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Paganin F, Lilienthal F, Bourdin A. et al. Severe community-acquired pneumonia: assessment of microbial aetiology as mortality factor. Eur Respir J 2004; 24 (05) 779-785
  • 2 Berntsson E, Lagergård T, Strannegård O, Trollfors B. Etiology of community-acquired pneumonia in out-patients. Eur J Clin Microbiol 1986; 5 (04) 446-447
  • 3 Apisarnthanarak A, Mundy LM. Etiology of community-acquired pneumonia. Clin Chest Med 2005; 26 (01) 47-55
  • 4 Jain S, Self WH, Wunderink RG. et al; CDC EPIC Study Team. Community-acquired pneumonia requiring hospitalization among U.S. adults. N Engl J Med 2015; 373 (05) 415-427
  • 5 Carugati M, Aliberti S, Reyes LF. et al. Microbiological testing of adults hospitalised with community-acquired pneumonia: an international study. ERJ Open Res 2018; 4 (04) 00096-2018
  • 6 Karhu J, Ala-Kokko TI, Vuorinen T, Ohtonen P, Syrjälä H. Lower respiratory tract virus findings in mechanically ventilated patients with severe community-acquired pneumonia. Clin Infect Dis 2014; 59 (01) 62-70
  • 7 Wu X, Wang Q, Wang M. et al. Incidence of respiratory viral infections detected by PCR and real-time PCR in adult patients with community-acquired pneumonia: a meta-analysis. Respiration 2015; 89 (04) 343-352
  • 8 Torres A, Cilloniz C, Niederman MS. et al. Pneumonia. Nat Rev Dis Primers 2021; 7 (01) 25
  • 9 Morgan AJ, Glossop AJ. Severe community-acquired pneumonia. BJA Educ 2016; 16 (05) 167-172
  • 10 Burk M, El-Kersh K, Saad M, Wiemken T, Ramirez J, Cavallazzi R. Viral infection in community-acquired pneumonia: a systematic review and meta-analysis. Eur Respir Rev 2016; 25 (140) 178-188
  • 11 Liu YN, Zhang YF, Xu Q. et al; Chinese Center for Disease Control and Prevention Etiology Surveillance Study Team of Acute Respiratory Infections. Infection and co-infection patterns of community-acquired pneumonia in patients of different ages in China from 2009 to 2020: a national surveillance study. Lancet Microbe 2023; 4 (05) e330-e339
  • 12 Qu J, Zhang J, Chen Y. et al. Aetiology of severe community acquired pneumonia in adults identified by combined detection methods: a multi-centre prospective study in China. Emerg Microbes Infect 2022; 11 (01) 556-566
  • 13 Song JH, Huh K, Chung DR. Community-Acquired Pneumonia in the Asia-Pacific Region. Semin Respir Crit Care Med 2016; 37 (06) 839-854
  • 14 Cilloniz C, Ferrer M, Liapikou A. et al. Acute respiratory distress syndrome in mechanically ventilated patients with community-acquired pneumonia. Eur Respir J 2018; 51 (03) 1702215
  • 15 Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 1995; 377 (6548): 435-438
  • 16 Gilbert RJ, Jiménez JL, Chen S. et al. Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae . Cell 1999; 97 (05) 647-655
  • 17 Rai P, He F, Kwang J, Engelward BP, Chow VTK. Pneumococcal pneumolysin induces DNA damage and cell cycle arrest. Sci Rep 2016; 6 (01) 22972
  • 18 Brito V, Niederman MS. How does one diagnose and manage severe community-acquired pneumonia? Evid Based Pract Crit Care 2011
  • 19 Bogaert D, De Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 2004; 4 (03) 144-154
  • 20 Rosen JB, Thomas AR, Lexau CA. et al; CDC Emerging Infections Program Network. Geographic variation in invasive pneumococcal disease following pneumococcal conjugate vaccine introduction in the United States. Clin Infect Dis 2011; 53 (02) 137-143
  • 21 Whitney CG, Farley MM, Hadler J. et al; Active Bacterial Core Surveillance of the Emerging Infections Program Network. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N Engl J Med 2003; 348 (18) 1737-1746
  • 22 Hsiao A, Hansen J, Timbol J. et al. Incidence and estimated vaccine effectiveness against hospitalizations for all-cause pneumonia among older US adults who were vaccinated and not vaccinated with 13-valent pneumococcal conjugate vaccine. JAMA Netw Open 2022; 5 (03) e221111-e221111
  • 23 Shoar S, Musher DM. Etiology of community-acquired pneumonia in adults: a systematic review. Pneumonia 2020; 12 (01) 11
  • 24 Self WH, Wunderink RG, Williams DJ. et al. Staphylococcus aureus community-acquired pneumonia: prevalence, clinical characteristics, and outcomes. Clin Infect Dis 2016; 63 (03) 300-309
  • 25 Pickens CO, Gao CA, Cuttica MJ. et al; NU COVID Investigators. Bacterial superinfection pneumonia in patients mechanically ventilated for COVID-19 pneumonia. Am J Respir Crit Care Med 2021; 204 (08) 921-932
  • 26 Berube BJ, Bubeck Wardenburg J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins (Basel) 2013; 5 (06) 1140-1166
  • 27 Adler A, Temper V, Block CS, Abramson N, Moses AE. Panton-Valentine leukocidin-producing Staphylococcus aureus . Emerg Infect Dis 2006; 12 (11) 1789-1790
  • 28 Labandeira-Rey M, Couzon F, Boisset S. et al. Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 2007; 315 (5815): 1130-1133
  • 29 Yu VL, Plouffe JF, Pastoris MC. et al. Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J Infect Dis 2002; 186 (01) 127-128
  • 30 Wang S, Tang J, Tan Y, Song Z, Qin L. Prevalence of atypical pathogens in patients with severe pneumonia: a systematic review and meta-analysis. BMJ Open 2023; 13 (04) e066721
  • 31 Arancibia F, Bauer TT, Ewig S. et al. Community-acquired pneumonia due to gram-negative bacteria and Pseudomonas aeruginosa: incidence, risk, and prognosis. Arch Intern Med 2002; 162 (16) 1849-1858
  • 32 Assefa M. Multi-drug resistant gram-negative bacterial pneumonia: etiology, risk factors, and drug resistance patterns. Pneumonia 2022; 14 (01) 4
  • 33 Villafuerte D, Aliberti S, Soni NJ. et al; GLIMP Investigators. Prevalence and risk factors for Enterobacteriaceae in patients hospitalized with community-acquired pneumonia. Respirology 2020; 25 (05) 543-551
  • 34 Aliberti S, Cilloniz C, Chalmers JD. et al. Multidrug-resistant pathogens in hospitalised patients coming from the community with pneumonia: a European perspective. Thorax 2013; 68 (11) 997-999
  • 35 Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22 (04) 582-610
  • 36 Restrepo MI, Babu BL, Reyes LF. et al; GLIMP. Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia: a multinational point prevalence study of hospitalised patients. Eur Respir J 2018; 52 (02) 1701190
  • 37 Cillóniz C, Gabarrús A, Ferrer M. et al. Community-acquired pneumonia due to multidrug- and non-multidrug-resistant Pseudomonas aeruginosa . Chest 2016; 150 (02) 415-425
  • 38 Kauffman CA. Histoplasmosis: a clinical and laboratory update. Clin Microbiol Rev 2007; 20 (01) 115-132
  • 39 Di Mango AL, Zanetti G, Penha D, Menna Barreto M, Marchiori E. Endemic pulmonary fungal diseases in immunocompetent patients: an emphasis on thoracic imaging. Expert Rev Respir Med 2019; 13 (03) 263-277
  • 40 McBride JA, Gauthier GM, Klein BS. Clinical manifestations and treatment of blastomycosis. Clin Chest Med 2017; 38 (03) 435-449
  • 41 Metlay JP, Waterer GW, Long AC. et al. Diagnosis and treatment of adults with community-acquired pneumonia. an official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019; 200 (07) e45-e67
  • 42 Kontou P, Kuti JL, Nicolau DP. Validation of the Infectious Diseases Society of America/American Thoracic Society criteria to predict severe community-acquired pneumonia caused by Streptococcus pneumoniae . Am J Emerg Med 2009; 27 (08) 968-974
  • 43 Chalmers JD, Taylor JK, Mandal P. et al. Validation of the Infectious Diseases Society of America/American Thoracic Society minor criteria for intensive care unit admission in community-acquired pneumonia patients without major criteria or contraindications to intensive care unit care. Clin Infect Dis 2011; 53 (06) 503-511
  • 44 Phua J, See KC, Chan YH. et al. Validation and clinical implications of the IDSA/ATS minor criteria for severe community-acquired pneumonia. Thorax 2009; 64 (07) 598-603
  • 45 Lim WS, Baudouin SV, George RC. et al; Pneumonia Guidelines Committee of the BTS Standards of Care Committee. BTS guidelines for the management of community acquired pneumonia in adults: update 2009. Thorax 2009; 64 (suppl 3): iii1-iii55
  • 46 Sanyal S, Smith PR, Saha AC, Gupta S, Berkowitz L, Homel P. Initial microbiologic studies did not affect outcome in adults hospitalized with community-acquired pneumonia. Am J Respir Crit Care Med 1999; 160 (01) 346-348
  • 47 Theerthakarai R, El-Halees W, Ismail M, Solis RA, Khan MA. Nonvalue of the initial microbiological studies in the management of nonsevere community-acquired pneumonia. Chest 2001; 119 (01) 181-184
  • 48 Rello J, Bodi M, Mariscal D. et al. Microbiological testing and outcome of patients with severe community-acquired pneumonia. Chest 2003; 123 (01) 174-180
  • 49 Uematsu H, Hashimoto H, Iwamoto T, Horiguchi H, Yasunaga H. Impact of guideline-concordant microbiological testing on outcomes of pneumonia. Int J Qual Health Care 2014; 26 (01) 100-107
  • 50 Bartlett JG. Diagnostic tests for agents of community-acquired pneumonia. Clin Infect Dis 2011; 52 (4, suppl 4): S296-S304
  • 51 Ziko LM, Hoffman TW, Fwoloshi S. et al. Aetiology and prognosis of community-acquired pneumonia at the Adult University Teaching Hospital in Zambia. PLoS One 2022; 17 (07) e0271449
  • 52 De Plato F, Fontana C, Gherardi G. et al. Collection, transport and storage procedures for blood culture specimens in adult patients: recommendations from a board of Italian experts. Clin Chem Lab Med 2019; 57 (11) 1680-1689
  • 53 Satzke C, Turner P, Virolainen-Julkunen A. et al; WHO Pneumococcal Carriage Working Group. Standard method for detecting upper respiratory carriage of Streptococcus pneumoniae: updated recommendations from the World Health Organization Pneumococcal Carriage Working Group. Vaccine 2013; 32 (01) 165-179
  • 54 Mondi MM, Chang MC, Bowton DL, Kilgo PD, Meredith JW, Miller PR. Prospective comparison of bronchoalveolar lavage and quantitative deep tracheal aspirate in the diagnosis of ventilator associated pneumonia. J Trauma 2005; 59 (04) 891-895 , discussion 895–896
  • 55 Martin-Loeches I, Chastre J, Wunderink RG. Bronchoscopy for diagnosis of ventilator-associated pneumonia. Intensive Care Med 2023; 49 (01) 79-82
  • 56 McCauley LM, Webb BJ, Sorensen J, Dean NC. Use of tracheal aspirate culture in newly intubated patients with community-onset pneumonia. Ann Am Thorac Soc 2016; 13 (03) 376-381
  • 57 van der Eerden MM, Vlaspolder F, de Graaff CS, Groot T, Jansen HM, Boersma WG. Value of intensive diagnostic microbiological investigation in low- and high-risk patients with community-acquired pneumonia. Eur J Clin Microbiol Infect Dis 2005; 24 (04) 241-249
  • 58 Zhang D, Yang D, Makam AN. Utility of blood cultures in pneumonia. Am J Med 2019; 132 (10) 1233-1238
  • 59 Costa MI, Cipriano A, Santos FV. et al. Clinical profile and microbiological aetiology diagnosis in adult patients hospitalized with community-acquired pneumonia. Pulmonology 2022; 28 (05) 358-367
  • 60 Amaro R, Liapikou A, Cilloniz C. et al. Predictive and prognostic factors in patients with blood-culture-positive community-acquired pneumococcal pneumonia. Eur Respir J 2016; 48 (03) 797-807
  • 61 Rand KH, Beal SG, Rivera K, Allen B, Payton T, Lipori GP. Hourly effect of pretreatment with IV antibiotics on blood culture positivity rate in emergency department patients. Open Forum Infect Dis 2019; 6 (05) ofz179
  • 62 Carbonnelle E, Mesquita C, Bille E. et al. MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 2011; 44 (01) 104-109
  • 63 Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics. J Clin Microbiol 2012; 50 (03) 927-937
  • 64 Xiao D, Zhao F, Lv M. et al. Rapid identification of microorganisms isolated from throat swab specimens of community-acquired pneumonia patients by two MALDI-TOF MS systems. Diagn Microbiol Infect Dis 2012; 73 (04) 301-307
  • 65 Molinos L, Zalacain R, Menéndez R. et al. Sensitivity, specificity, and positivity predictors of the pneumococcal urinary antigen test in community-acquired pneumonia. Ann Am Thorac Soc 2015; 12 (10) 1482-1489
  • 66 Sinclair A, Xie X, Teltscher M, Dendukuri N. Systematic review and meta-analysis of a urine-based pneumococcal antigen test for diagnosis of community-acquired pneumonia caused by Streptococcus pneumoniae . J Clin Microbiol 2013; 51 (07) 2303-2310
  • 67 West DM, McCauley LM, Sorensen JS, Jephson AR, Dean NC. Pneumococcal urinary antigen test use in diagnosis and treatment of pneumonia in seven Utah hospitals. ERJ Open Res 2016; 2 (04) 00011-2016
  • 68 Morrill WE, Barbaree JM, Fields BS, Sanden GN, Martin WT. Increased recovery of Legionella micdadei and Legionella bozemanii on buffered charcoal yeast extract agar supplemented with albumin. J Clin Microbiol 1990; 28 (03) 616-618
  • 69 Helbig JH, Uldum SA, Bernander S. et al. Clinical utility of urinary antigen detection for diagnosis of community-acquired, travel-associated, and nosocomial legionnaires' disease. J Clin Microbiol 2003; 41 (02) 838-840
  • 70 Kashuba AD, Ballow CH. Legionella urinary antigen testing: potential impact on diagnosis and antibiotic therapy. Diagn Microbiol Infect Dis 1996; 24 (03) 129-139
  • 71 van der Eerden MM, Vlaspolder F, de Graaff CS. et al. Comparison between pathogen directed antibiotic treatment and empirical broad spectrum antibiotic treatment in patients with community acquired pneumonia: a prospective randomised study. Thorax 2005; 60 (08) 672-678
  • 72 Falguera M, Ruiz-González A, Schoenenberger JA. et al. Prospective, randomised study to compare empirical treatment versus targeted treatment on the basis of the urine antigen results in hospitalised patients with community-acquired pneumonia. Thorax 2010; 65 (02) 101-106
  • 73 Costantini E, Allara E, Patrucco F, Faggiano F, Hamid F, Balbo PE. Adherence to guidelines for hospitalized community-acquired pneumonia over time and its impact on health outcomes and mortality. Intern Emerg Med 2016; 11 (07) 929-940
  • 74 Pickens CI, Wunderink RG. Novel and rapid diagnostics for common infections in the critically ill patient. Clin Chest Med 2022; 43 (03) 401-410
  • 75 Prats E, Dorca J, Pujol M. et al. Effects of antibiotics on protected specimen brush sampling in ventilator-associated pneumonia. Eur Respir J 2002; 19 (05) 944-951
  • 76 Apfalter P, Reischl U, Hammerschlag MR. In-house nucleic acid amplification assays in research: how much quality control is needed before one can rely upon the results?. J Clin Microbiol 2005; 43 (12) 5835-5841
  • 77 Zacharioudakis IM, Zervou FN, Dubrovskaya Y, Inglima K, See B, Aguero-Rosenfeld M. Evaluation of a multiplex PCR panel for the microbiological diagnosis of pneumonia in hospitalized patients: experience from an academic medical center. Int J Infect Dis 2021; 104: 354-360
  • 78 Breijyeh Z, Jubeh B, Karaman R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 2020; 25 (06) 1340
  • 79 Rhodes NJ, Richardson CL, Heraty R. et al. Unacceptably high error rates in Vitek 2 testing of cefepime susceptibility in extended-spectrum-β-lactamase-producing Escherichia coli . Antimicrob Agents Chemother 2014; 58 (07) 3757-3761
  • 80 Martin-Loeches I, Torres A, Nagavci B. et al. ERS/ESICM/ESCMID/ALAT guidelines for the management of severe community-acquired pneumonia. Eur Respir J 2023; 61 (04) 2200735
  • 81 Portillo A, Ruiz-Larrea F, Zarazaga M, Alonso A, Martinez JL, Torres C. Macrolide resistance genes in Enterococcus spp. Antimicrob Agents Chemother 2000; 44 (04) 967-971
  • 82 Roth SB, Jalava J, Ruuskanen O, Ruohola A, Nikkari S. Use of an oligonucleotide array for laboratory diagnosis of bacteria responsible for acute upper respiratory infections. J Clin Microbiol 2004; 42 (09) 4268-4274
  • 83 Blauwkamp TA, Thair S, Rosen MJ. et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol 2019; 4 (04) 663-674
  • 84 Neyton LPA, Langelier CR, Calfee CS. Metagenomic sequencing in the ICU for precision diagnosis of critical infectious illnesses. Crit Care 2023; 27 (01) 90
  • 85 Gu W, Deng X, Lee M. et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nat Med 2021; 27 (01) 115-124
  • 86 Hanson KE, Azar MM, Banerjee R. et al. Molecular testing for acute respiratory tract infections: clinical and diagnostic recommendations from the IDSA's Diagnostics Committee. Clin Infect Dis 2020; 71 (10) 2744-2751
  • 87 Liolios L, Jenney A, Spelman D, Kotsimbos T, Catton M, Wesselingh S. Comparison of a multiplex reverse transcription-PCR-enzyme hybridization assay with conventional viral culture and immunofluorescence techniques for the detection of seven viral respiratory pathogens. J Clin Microbiol 2001; 39 (08) 2779-2783
  • 88 Uyeki TM, Bernstein HH, Bradley JS. et al. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 update on diagnosis, treatment, chemoprophylaxis, and institutional outbreak management of seasonal influenza. Clin Infect Dis 2019; 68 (06) 1-47
  • 89 Evans SE, Jennerich AL, Azar MM. et al. Nucleic acid-based testing for noninfluenza viral pathogens in adults with suspected community-acquired pneumonia. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2021; 203 (09) 1070-1087
  • 90 Guillon A, Aymeric S, Gaudy-Graffin C. et al. Impact on the medical decision-making process of multiplex PCR assay for respiratory pathogens. Epidemiol Infect 2017; 145 (13) 2766-2769
  • 91 Andrews D, Chetty Y, Cooper BS. et al. Multiplex PCR point of care testing versus routine, laboratory-based testing in the treatment of adults with respiratory tract infections: a quasi-randomised study assessing impact on length of stay and antimicrobial use. BMC Infect Dis 2017; 17 (01) 671
  • 92 Bouzid D, Hingrat QL, Salipante F. et al. Agreement of respiratory viruses' detection between nasopharyngeal swab and bronchoalveolar lavage in adults admitted for pneumonia: a retrospective study. Clin Microbiol Infect 2023; 29 (07) 942.e1-942.e6
  • 93 Gao CA, Cuttica MJ, Malsin ES, Argento AC, Wunderink RG, Smith SB. NU COVID Investigators. Comparing nasopharyngeal and BAL SARS-CoV-2 assays in respiratory failure. Am J Respir Crit Care Med 2021; 203 (01) 127-129
  • 94 Lachant DJ, Croft DP, McGrane Minton H, Prasad P, Kottmann RM. Nasopharyngeal viral PCR in immunosuppressed patients and its association with virus detection in bronchoalveolar lavage by PCR. Respirology 2017; 22 (06) 1205-1211
  • 95 Bogoch II, Andrews JR, Zachary KC, Hohmann EL. Diagnosis of influenza from lower respiratory tract sampling after negative upper respiratory tract sampling. Virulence 2013; 4 (01) 82-84
  • 96 Boonyaratanakornkit J, Vivek M, Xie H. et al. Predictive value of respiratory viral detection in the upper respiratory tract for infection of the lower respiratory tract with hematopoietic stem cell transplantation. J Infect Dis 2020; 221 (03) 379-388
  • 97 Stafylaki D, Maraki S, Vaporidi K. et al. Impact of molecular syndromic diagnosis of severe pneumonia in the management of critically ill patients. Microbiol Spectr 2022; 10 (05) e0161622
  • 98 Lee SH, Ruan SY, Pan SC, Lee TF, Chien JY, Hsueh PR. Performance of a multiplex PCR pneumonia panel for the identification of respiratory pathogens and the main determinants of resistance from the lower respiratory tract specimens of adult patients in intensive care units. J Microbiol Immunol Infect 2019; 52 (06) 920-928
  • 99 Foschi C, Zignoli A, Gaibani P. et al. Respiratory bacterial co-infections in intensive care unit-hospitalized COVID-19 patients: conventional culture vs BioFire FilmArray pneumonia Plus panel. J Microbiol Methods 2021; 186: 106259
  • 100 Rello J, Lisboa T, Lujan M. et al; DNA-Neumococo Study Group. Severity of pneumococcal pneumonia associated with genomic bacterial load. Chest 2009; 136 (03) 832-840
  • 101 Monard C, Pehlivan J, Auger G. et al; ADAPT study group. Multicenter evaluation of a syndromic rapid multiplex PCR test for early adaptation of antimicrobial therapy in adult patients with pneumonia. Crit Care 2020; 24 (01) 434
  • 102 Pickens C, Wunderink RG, Qi C. et al. A multiplex polymerase chain reaction assay for antibiotic stewardship in suspected pneumonia. Diagn Microbiol Infect Dis 2020; 98 (04) 115179
  • 103 Paonessa JR, Shah RD, Pickens CI, Lizza BD, Donnelly HK, Malczynski M, Qi C, Wunderink RG. Rapid Detection of Methicillin-Resistant Staphylococcus aureus in BAL: A Pilot Randomized Controlled Trial. Chest 2019; 155 (05) 999-1007
  • 104 Rand KH, Beal SG, Cherabuddi K. et al. Performance of a semiquantitative multiplex bacterial and viral PCR panel compared with standard microbiological laboratory results: 396 patients studied with the BioFire Pneumonia Panel. Open Forum Infect Dis 2020; 8 (01) ofaa560