Skip to main content

Advertisement

Log in

Monoclonal Antibody Targeting CGRP Relieves Cisplatin-Induced Neuropathic Pain by Attenuating Neuroinflammation

  • Research
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Chemotherapy-induced neuropathic pain (CIPN) is a common side effect of antitumor chemotherapeutic agents. It describes a pathological state of pain related to the cumulative dosage of the drug, significantly limiting the efficacy of antitumor treatment. Sofas strategies alleviating CIPN still lack. Calcitonin gene-related peptide (CGRP) is a neuropeptide involved in many pathologic pains. In this study, we explored the effects of CGRP blocking on CIPN and potential mechanisms. Total dose of 20.7 mg/kg cisplatin was used to establish a CIPN mouse model. Mechanical and thermal hypersensitivity was measured using von Frey hairs and tail flick test. Western blot and immunofluorescence were utilized to evaluate the levels of CGRP and activated astrocytes in mouse spinal cord, respectively. In addition, real-time quantitative PCR (RT-qPCR) was used to detect the level of inflammatory cytokines such as IL-6, IL-1β, and NLRP3 in vitro and in vivo. There are markedly increased CGRP expression and astrocyte activation in the spinal cord of mice following cisplatin treatment. Pretreatment with a monoclonal antibody targeting CGRP (ZR8 mAb) effectively reduced cisplatin-induced mechanical hypersensitivity and thermal nociceptive sensitization and attenuated neuroinflammation as marked by downregulated expression of IL-6, IL-1β, and NLRP3 in the mice spinal cord and spleen. Lastly, ZR8 mAb does not interfere with the antitumor effects of cisplatin in tumor-bearing mice. Our findings indicate that neutralizing CGRP with monoclonal antibody could effectively alleviate CIPN by attenuating neuroinflammation. CGRP is a promising therapeutic target for CIPN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Albany C et al (2021) Cisplatin-associated neuropathy characteristics compared with those associated with other neurotoxic chemotherapy agents (Alliance A151724). Support Care Cancer 29(2):833–840

    Article  PubMed  Google Scholar 

  • Alotaibi M et al (2022) Alleviation of cisplatin-induced neuropathic pain, neuronal apoptosis, and systemic inflammation in mice by rapamycin. Front Aging Neurosci 14:891593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An Q et al (2021) Calcitonin gene-related peptide regulates spinal microglial activation through the histone H3 lysine 27 trimethylation via enhancer of zeste homolog-2 in rats with neuropathic pain. J Neuroinflammation 18(1):117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Argyriou AA et al (2012) Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol 82(1):51–77

    Article  PubMed  Google Scholar 

  • Banach M, Juranek JK, Zygulska AL (2017) Chemotherapy-induced neuropathies-a growing problem for patients and health care providers. Brain Behav 7(1):e00558

    Article  PubMed  Google Scholar 

  • Benschop RJ et al (2014) Development of a novel antibody to calcitonin gene-related peptide for the treatment of osteoarthritis-related pain. Osteoarthr Cartil 22(4):578–585

    Article  CAS  Google Scholar 

  • Boulikas T, Vougiouka M (2003) Cisplatin and platinum drugs at the molecular level (review). Oncol Rep 10(6):1663–1682

    CAS  PubMed  Google Scholar 

  • Canta A, Pozzi E, Carozzi VA (2015) Mitochondrial dysfunction in chemotherapy-induced peripheral neuropathy (CIPN). Toxics 3(2):198–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao A et al (2023) Effect of exercise on chemotherapy-induced peripheral neuropathy among patients treated for ovarian cancer: a secondary analysis of a randomized clinical trial. JAMA Netw Open 6(8):e2326463

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavaletti G, Marmiroli P (2015) Chemotherapy-induced peripheral neurotoxicity. Curr Opin Neurol 28(5):500–507

    Article  CAS  PubMed  Google Scholar 

  • Chaplan SR et al (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Colvin LA (2019) Chemotherapy-induced peripheral neuropathy: where are we now? Pain 160(Suppl 1):S1–S10

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  • De Logu F et al (2022) Schwann cell endosome CGRP signals elicit periorbital mechanical allodynia in mice. Nat Commun 13(1):646

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Domingo IK, Latif A, Bhavsar AP (2022) Pro-inflammatory signalling PRRopels cisplatin-induced toxicity. Int J Mol Sci 23(13)

  • Flatters SJL, Dougherty PM, Colvin LA (2017) Clinical and preclinical perspectives on chemotherapy-induced peripheral neuropathy (CIPN): a narrative review. Br J Anaesth 119(4):737–749

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli G et al (2020) Neuroinflammatory process involved in different preclinical models of chemotherapy-induced peripheral neuropathy. Front Immunol 11:626687

    Article  CAS  PubMed  Google Scholar 

  • Gregg RW et al (1992) Cisplatin neurotoxicity: the relationship between dosage, time, and platinum concentration in neurologic tissues, and morphologic evidence of toxicity. J Clin Oncol 10(5):795–803

    Article  CAS  PubMed  Google Scholar 

  • Hansen RR et al (2016) Role of extracellular calcitonin gene-related peptide in spinal cord mechanisms of cancer-induced bone pain. Pain 157(3):666–676

    Article  CAS  PubMed  Google Scholar 

  • Huang X et al (2021) Downregulation of metallothionein-2 contributes to oxaliplatin-induced neuropathic pain. J Neuroinflammation 18(1):91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyengar S, Ossipov MH, Johnson KW (2017) The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 158(4):543–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janes K et al (2015) Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav Immun 44:91–99

    Article  CAS  PubMed  Google Scholar 

  • Jordan B et al (2020) Systemic anticancer therapy-induced peripheral and central neurotoxicity: ESMO-EONS-EANO Clinical Practice Guidelines for diagnosis, prevention, treatment and follow-up. Ann Oncol 31(10):1306–1319

    Article  CAS  PubMed  Google Scholar 

  • Kerckhove N et al (2017) Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: a comprehensive literature review. Front Pharmacol 8:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Krukowski K et al (2017) HDAC6 inhibition effectively reverses chemotherapy-induced peripheral neuropathy. Pain 158(6):1126–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labastida-Ramírez A et al (2023) Mode and site of action of therapies targeting CGRP signaling. J Headache Pain 24(1):125

    Article  PubMed  PubMed Central  Google Scholar 

  • Leo M et al (2021a) Cisplatin-induced activation and functional modulation of satellite glial cells lead to cytokine-mediated modulation of sensory neuron excitability. Exp Neurol 341:113695

    Article  CAS  PubMed  Google Scholar 

  • Leo M et al (2021b) Modulation of glutamate transporter EAAT1 and inward-rectifier potassium channel K(ir4.1) expression in cultured spinal cord astrocytes by platinum-based chemotherapeutics. Int J Mol Sci 22(12)

  • Li Y et al (2015) MAPK signaling downstream to TLR4 contributes to paclitaxel-induced peripheral neuropathy. Brain Behav Immun 49:255–266

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Li Y et al (2018) DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain. J Neurosci 38(5):1124–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liddelow SA et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Ma X et al (2022) Spinal neuronal GRK2 contributes to preventive effect by electroacupuncture on cisplatin-induced peripheral neuropathy in mice. Anesth Analg 134(1):204–215

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Makker PG et al (2017) Characterisation of immune and neuroinflammatory changes associated with chemotherapy-induced peripheral neuropathy. PLoS ONE 12(1):e0170814

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald ES et al (2005) Cisplatin preferentially binds to DNA in dorsal root ganglion neurons in vitro and in vivo: a potential mechanism for neurotoxicity. Neurobiol Dis 18(2):305–313

    Article  CAS  PubMed  Google Scholar 

  • Mei C et al (2023) Trimethoxyflavanone relieves paclitaxel-induced neuropathic pain via inhibiting expression and activation of P2X7 and production of CGRP in mice. Neuropharmacology 236:109584

    Article  CAS  PubMed  Google Scholar 

  • Navia-Pelaez JM et al (2021) Normalization of cholesterol metabolism in spinal microglia alleviates neuropathic pain. J Exp Med 218(7)

  • Park JH et al (2015) Oxaliplatin-induced peripheral neuropathy via TRPA1 stimulation in mice dorsal root ganglion is correlated with aluminum accumulation. PLoS ONE 10(4):e0124875

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson CR, Zhang H, Dougherty PM (2014) Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience 274:308–317

    Article  CAS  PubMed  Google Scholar 

  • Russo AF (2015) Calcitonin gene-related peptide (CGRP): a new target for migraine. Annu Rev Pharmacol Toxicol 55:533–552

    Article  CAS  PubMed  Google Scholar 

  • Schmitt LI et al (2020) Activation and functional modulation of satellite glial cells by oxaliplatin lead to hyperexcitability of sensory neurons in vitro. Mol Cell Neurosci 105:103499

    Article  CAS  PubMed  Google Scholar 

  • Seretny M et al (2014) Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 155(12):2461–2470

    Article  PubMed  Google Scholar 

  • Starobova H, Vetter I (2017) Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 10:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun C et al (2021) Calcitonin gene-related peptide induces the histone H3 lysine 9 acetylation in astrocytes associated with neuroinflammation in rats with neuropathic pain. CNS Neurosci Ther 27(11):1409–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wedel S et al (2023) SAFit2 ameliorates paclitaxel-induced neuropathic pain by reducing spinal gliosis and elevating pro-resolving lipid mediators. J Neuroinflammation 20(1):149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon SY et al (2013) Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity. J Pain 14(2):205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H et al (2022) Osteoarthritis pain. Int J Mol Sci 23(9)

  • Zabel MK et al (2016) Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa. Glia 64(9):1479–1491

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2022) HDAC6 inhibition reverses cisplatin-induced mechanical hypersensitivity via tonic delta opioid receptor signaling. J Neurosci 42(42):7862–7874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z et al (2023) The S1P receptor 1 antagonist Ponesimod reduces TLR4-induced neuroinflammation and increases Aβ clearance in 5XFAD mice. EBioMedicine 94:104713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the China Science and Technology STI 2030—Major Projects (2021ZD0201600), National Natural Science Foundation of China (82171753, 82301992).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization and design of the study, S.X. performed all experiments and wrote the main manuscript, Z.G. assisted in designing the experiments, graphing and writing part of the manuscript, J.Z. analyzed the data and wrote part of the manuscript, C.X and Y.D. assisted with part of the experiments and data analysis, L.W. assisted with part of the experiments, Z.W., Y.L. and G.L. help analyze data, G.H. provided the main funding and carried out the corrections to the manuscript, and T.G. designed the main experiments and participated in the corrections to the manuscript.

Corresponding authors

Correspondence to Gencheng Han or Taiqian Gong.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. The Animal Ethics Committee of the Beijing Institute of Basic Medical Sciences, Beijing, China, approved the experiments (IACUC-DWZX-2022–546).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 8405 KB)

Supplementary file2 (TIF 7188 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Gao, Z., Zhang, J. et al. Monoclonal Antibody Targeting CGRP Relieves Cisplatin-Induced Neuropathic Pain by Attenuating Neuroinflammation. Neurotox Res 42, 8 (2024). https://doi.org/10.1007/s12640-023-00685-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12640-023-00685-w

Keywords

Navigation