Skip to main content
Log in

Polylinear Differential Realization of Deterministic Dynamic Chaos in the Class of Higher Order Equations with Delay

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

A characteristic criterion (and its modifications) of the solvability of differential realization of the bundle of controlled trajectory curves of deterministic chaotic dynamic processes in the class of higher order bilinear nonautonomous ordinary differential equations (with and without delay) in the separable Hilbert space has been found. This formulation refers to inverse problems for the additive combination of higher order nonstationary linear and bilinear operators of the evolution equation in the Hilbert space. This theory is based on constructs of tensor products of Hilbert spaces, structures of lattices with an orthocomplement, the theory of extension of M2 operators, and the functional apparatus of the Rayleigh–Ritz nonlinear entropy operator. It has been shown that, in the case of a finite bundle of controlled trajectory curves, the property of sublinearity of the given operator allows one to obtain sufficient conditions for the existence of such realizations. The results obtained in this study are partly of a review nature and can become the basis for the development (in terms of Fock spaces) of a qualitative theory of inverse problems of higher order polylinear evolution equations with generalized delay operators describing, for example, the modeling of nonlinear oscillators of the Van der Pol type or Lorentz strange attractors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. H. G. Schuster, Deterministic Chaos: An Introduction (Wiley, Weinheim, 1984).

    Google Scholar 

  2. A. I. Chulichkov, Mathematical Methods of Nonlinear Dynamics (Fizmatlit, Moscow, 2003).

    Google Scholar 

  3. L. V. Kantorovich and G. P. Akilov, Functional Analysis (Nauka, Moscow, 1977; Elsevier, 2016).

  4. M. Reed and B. Simon, Methods of Modern Mathematical Physics: Functional Analysis (Academic, 1972). https://doi.org/10.1016/B978-0-12-585001-8.X5001-6

    Book  Google Scholar 

  5. A. I. Kostrikin and Yu. I. Manin, Linear Algebra and Geometry (Nauka, Moscow, 1986).

    Google Scholar 

  6. N. L. Gol’dman, “Finding the coefficient multiplying the time derivative in quasilinear parabolic equations in Hölder spaces,” Differ. Equations 48, 1563–1571 (2012). https://doi.org/10.1134/S0012266112120026

    Article  MathSciNet  Google Scholar 

  7. V. A. Rusanov, A. V. Daneev, A. V. Lakeev, and Yu. É. Linke, “On the differential realization theory of non-linear dynamic processes in Hilbert space,” Far East J. Math. Sci. (FJMS) 97, 495–532 (2015). https://doi.org/10.17654/fjmsjun2015_495_532

    Article  Google Scholar 

  8. V. A. Rusanov, A. V. Daneev, and Yu. E. Linke, “To the geometrical theory of differential realization of dynamic processes in a Hilbert space,” Cybern. Syst. Anal. 53, 554–564 (2017). https://doi.org/10.1007/s10559-017-9957-z

    Article  Google Scholar 

  9. V. A. Rusanov, A. V. Lakeev, and Yu. È. Linke, “A differential realization of an input-output autonomous nonlinear system of minimal dynamic order in a Hilbert space,” Dokl. Math. 88, 499–502 (2013). https://doi.org/10.1134/s1064562413040042

    Article  MathSciNet  Google Scholar 

  10. Yu. E. Anikonov and M. V. Neshchadim, “On analytical methods in the theory of inverse problems for hyperbolic equations. I,” J. Appl. Ind. Math. 5, 506–518 (2011). https://doi.org/10.1134/S1990478911040053

    Article  MathSciNet  Google Scholar 

  11. V. A. Rusanov, A. V. Banshchikov, A. V. Daneev, and A. V. Lakeyev, “Maximum entropy principle in the differential second-order realization of a non-stationary bilinear system,” Adv. Differ. Equations Control Processes 20, 223–248 (2019). https://doi.org/10.17654/de020020223

    Article  Google Scholar 

  12. Yu. S. Popkov, “Controlled positive dynamic systems with an entropy operator: Fundamentals of the theory and applications,” Mathematics 9, 2585 (2021). https://doi.org/10.3390/math9202585

    Article  Google Scholar 

  13. J. Warga, Optimal Control of Differential and Functional Equations (Elsevier, London, 1972). https://doi.org/10.1016/C2013-0-11669-8

    Book  Google Scholar 

  14. M. D. Mesarovic and Y. Takahara, General Systems Theory: Mathematical Foundations, Mathematics in Science and Engineering, Vol. 113 (Elsevier, New York, 1975). https://doi.org/10.1016/S0076-5392(08)62222-5

  15. A. A. Kirillov, Elements of the Theory of Representations (Nauka, Moscow, 1978; Springer, Berlin, 1976).

  16. K. Yosida, Functional Analysis (Springer-Verlag, Berlin, 1965).

    Book  Google Scholar 

  17. V. A. Rusanov, A. V. Daneev, and Yu. E. Linke, “Adjustment optimization for a model of differential realization of a multidimensional second-order system,” Differ. Equations 55, 1390–1396 (2012). https://doi.org/10.1134/s0012266119100148

    Article  MathSciNet  Google Scholar 

  18. A. V. Lakeev, Yu. È. Linke, and V. A. Rusanov, “Metric properties of the Rayleigh–Ritz operator,” Russ. Math. 66, 46–53 (2022). https://doi.org/10.3103/s1066369x22090055

    Article  MathSciNet  Google Scholar 

  19. J. L. Massera and J. J. Schäffer, Linear Differential Equations and Function Spaces (Academic, London, 1966).

    Google Scholar 

  20. Yu. Komura, “Nonlinear semi-groups in Hilbert space,” J. Math. Soc. Jpn. 19, 493–507 (1967). https://doi.org/10.2969/jmsj/01940493

    Article  MathSciNet  Google Scholar 

  21. R. E. Edwards, Functional Analysis: Theory and Applications (Holt, R. & W. Publ., New York, 1965).

  22. A. T. Fomenko and D. B. Fuks, Homotopical Topology (Brill, Moscow, 1989; Springer, Cham, 2016). https://doi.org/10.1163/26659719_mosc_moscownews1989198919890122

  23. S. P. Novikov and I. A. Taimanov, Modern Geometric Structures and Fields (MTsNMO, Moscow, 2014; American Mathematical Society, Providence, R.I., 2006). https://doi.org/10.1090/gsm/071/07

  24. J. Grabmeier, E. Kaltofen, and V. Weispfenning, Computer Algebra Handbook: Foundations, Applications, Systems (Springer, Berlin, 2003). https://doi.org/10.1007/978-3-642-55826-9

    Book  Google Scholar 

  25. A. A. Kosov and E. I. Semenov, “On exact multidimensional solutions of a nonlinear system of reaction–diffusion equations,” Differ. Equations 54, 106–120 (2018). https://doi.org/10.1134/s0012266118010093

    Article  MathSciNet  Google Scholar 

  26. S. Brzychczy and R. R. Poznanski, Mathematical Neuroscience (Academic, New York, 2013). https://doi.org/10.1016/C2012-0-06903-7

    Book  Google Scholar 

  27. A. V. Savel’ev, “Sources of variation in the dynamical properties of neural system at synaptic level in neurocomputing,” Iskusstvennyi Intellekt 4, 323–338 (2006).

    Google Scholar 

  28. A. V. Daneev, A. V. Lakeev, V. A. Rusanov, and P. A. Plesnev, “Differential non-autonomous representation of the integrative activity of a neural population by a bilinear second-order model with delay,” in Human Interaction, Emerging Technologies and Future Systems V, Ed. by T. Ahram and R. Taiar, Lecture Notes in Networks and Systems, Vol. 319 (Springer, Cham, 2022), pp. 191–199. https://doi.org/10.1007/978-3-030-85540-6_25

  29. G. M. Zaslavskii, The Physics of Chaos in Hamiltonian Systems (Inst. Komp’yuternykh Tekhnol., Izhevsk, 2004; Imerial College Press, London, 2007).

  30. A. V. Daneev, A. V. Lakeev, and V. A. Rusanov, “To existence of completely continuous differential realization second order bilinear system,” Izv. Samarsk. Nauchn. Tsentra Ross. Akad. Nauk 23 (4), 116–132 (2021). https://doi.org/10.37313/1990-5378-2021-23-4-116-132

    Article  Google Scholar 

  31. J. Dieudonné, Éléments d’analyse (Gauthier-Villars, Paris, 1979).

    Google Scholar 

  32. Yu. L. Daletskii and S. V. Fomin, Measures and Differential Equations in Infinite-Dimensional Spaces (Nauka, Moscow, 1983; Springer, 1991).

  33. A. J. Van der Schaft, “On realization of nonlinear systems described by higher-order differential equations,” Math. Syst. Theory 19, 239–275 (1986). https://doi.org/10.1007/BF01704916

    Article  MathSciNet  Google Scholar 

  34. V. A. Rusanov, A. V. Lakeyev, A. V. Daneev, and Yu. É. Linke, “Semiadditivity of the entropy Rayleigh-Ritz operator in the problem of realization of an invariant polylinear regulator of a non-stationary hyperbolic system,” Adv. Differ. Equations Control Processes 27, 181–202 (2022). https://doi.org/10.17654/0974324322020

    Article  Google Scholar 

  35. V. I. Arnol’d, Ordinary Differential Equations (MTsNMO, Moscow, 2012; Springer, Berlin, 1992).

  36. H. Poincaré, On Science (Nauka, Moscow, 1983).

    Google Scholar 

  37. M. Kline, Mathematics: The Loss of Certainty (Oxford Univ. Press, Oxford, 1982).

    Google Scholar 

  38. I. Newton, Philosophiae Naturalis Principia Mathematica (Jussu Societatis Regiae ac Typis Joseph Streater, London, 1687).

  39. V. A. Rusanov, L. V. Antonova, A. V. Daneev, and A. S. Mironov, “Differential realization with a minimum operator norm of a controlled dynamic process,” Adv. Differ. Equations Control Processes 11 (1), 1–40 (2013).

    MathSciNet  Google Scholar 

  40. M. A. Krasnosel’skii, P. P. Zabreyko, E. I. Pustylnik, and P. E. Sobolevski, Integral Operators in Spaces of Summable Functions (Nauka, Moscow, 1966; Springer, Dordrecht, 1976).

  41. V. A. Rusanov, A. V. Lakeev, and Yu. E. Linke, “Solvability of differential realization of minimum dynamic order for a family of nonlinear input-output processes in Hilbert space,” Differ. Equations 51, 533–547 (2015). https://doi.org/10.1134/s0012266115040102

    Article  MathSciNet  Google Scholar 

  42. N. I. Zhukova, G. S. Levin, and N. S. Tonysheva, “Chaotic topological foliations,” Russ. Math. 66, 66–70 (2022). https://doi.org/10.3103/s1066369x22080102

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation, project no. 121041300056-7.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Banshchikov, A. V. Lakeev or V. A. Rusanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Arutyunyan

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banshchikov, A.V., Lakeev, A.V. & Rusanov, V.A. Polylinear Differential Realization of Deterministic Dynamic Chaos in the Class of Higher Order Equations with Delay. Russ Math. 67, 39–53 (2023). https://doi.org/10.3103/S1066369X2310002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X2310002X

Keywords:

Navigation