Skip to main content
Log in

Impact of knockout of dual-specificity protein phosphatase 5 on structural and mechanical properties of rat middle cerebral arteries: implications for vascular aging

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Vascular aging influences hemodynamics, elevating risks for vascular diseases and dementia. We recently demonstrated that knockout (KO) of Dusp5 enhances cerebral and renal hemodynamics and cognitive function. This improvement correlates with elevated pPKC and pERK1/2 levels in the brain and kidneys. Additionally, we observed that Dusp5 KO modulates the passive mechanical properties of cerebral and renal arterioles, associated with increased myogenic tone at low pressure, enhanced distensibility, greater compliance, and reduced stiffness. The present study evaluates the structural and mechanical properties of the middle cerebral artery (MCA) in Dusp5 KO rats. We found that vascular smooth muscle cell layers and the collagen content in the MCA wall are comparable between Dusp5 KO and control rats. The internal elastic lamina in the MCA of Dusp5 KO rats exhibits increased thickness, higher autofluorescence intensity, smaller fenestrae areas, and fewer fenestrations. Despite an enhanced myogenic response and tone of the MCA in Dusp5 KO rats, other passive mechanical properties, such as wall thickness, cross-sectional area, wall-to-lumen ratio, distensibility, incremental elasticity, circumferential wall stress, and elastic modulus, do not significantly differ between strains. These findings suggest that while Dusp5 KO has a limited impact on altering the structural and mechanical properties of MCA, its primary role in ameliorating hemodynamics and cognitive functions is likely attributable to its enzymatic activity on cerebral arterioles. Further research is needed to elucidate the specific enzymatic mechanisms and explore potential clinical applications in the context of vascular aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available upon reasonable request from the corresponding author.

References

  1. Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A. Mechanisms of vascular aging. Circ Res. 2018;123:849–67. https://doi.org/10.1161/CIRCRESAHA.118.311378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guo Y, Wang S, Liu Y, Fan L, Booz GW, Roman RJ, Chen Z, Fan F. Accelerated cerebral vascular injury in diabetes is associated with vascular smooth muscle cell dysfunction. Geroscience. 2020;42:547–61. https://doi.org/10.1007/s11357-020-00179-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shekhar S, Liu R, Travis OK, Roman RJ, Fan F. Cerebral autoregulation in hypertension and ischemic stroke: A mini review. J Pharm Sci Exp Pharmacol. 2017;2017:21–7.

    PubMed  PubMed Central  Google Scholar 

  4. Wang S, Lv W, Zhang H, Liu Y, Li L, Jefferson JR, Guo Y, Li M, Gao W, Fang X, et al. Aging exacerbates impairments of cerebral blood flow autoregulation and cognition in diabetic rats. Geroscience. 2020;42:1387–410. https://doi.org/10.1007/s11357-020-00233-w.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fan F, Ge Y, Lv W, Elliott MR, Muroya Y, Hirata T, Booz GW, Roman RJ. Molecular mechanisms and cell signaling of 20-hydroxyeicosatetraenoic acid in vascular pathophysiology. Front Biosci (Landmark Ed). 2016;21:1427–63.

    Article  CAS  PubMed  Google Scholar 

  6. Fan F, Geurts AM, Murphy SR, Pabbidi MR, Jacob HJ, Roman RJ. Impaired myogenic response and autoregulation of cerebral blood flow is rescued in CYP4A1 transgenic Dahl salt-sensitive rat. Am J Physiol Regul Integr Comp Physiol. 2015;308:R379-390. https://doi.org/10.1152/ajpregu.00256.2014.

    Article  CAS  PubMed  Google Scholar 

  7. Fan F, Geurts AM, Pabbidi MR, Ge Y, Zhang C, Wang S, Liu Y, Gao W, Guo Y, Li L, et al. A mutation in gamma-adducin impairs autoregulation of renal blood flow and promotes the development of kidney disease. J Am Soc Nephrol. 2020;31:687–700. https://doi.org/10.1681/ASN.2019080784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fan F, Simino J, Auchus AP, Knopman DS, Boerwinkle E, Fornage M, Mosley TH, Roman RJ. Functional variants in CYP4A11 and CYP4F2 are associated with cognitive impairment and related dementia endophenotypes in the elderly. Paper presented at: The 16th International Winter Eicosanoid Conference. Baltimore; 2016.

  9. Bloom SI, Tucker JR, Lim J, Thomas TG, Stoddard GJ, Lesniewski LA, Donato AJ. Aging results in DNA damage and telomere dysfunction that is greater in endothelial versus vascular smooth muscle cells and is exacerbated in atheroprone regions. Geroscience. 2022;44:2741–55. https://doi.org/10.1007/s11357-022-00681-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tucsek Z, NoaValcarcel-Ares M, Tarantini S, Yabluchanskiy A, Fulop G, Gautam T, Orock A, Csiszar A, Deak F, Ungvari Z. Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: Implications for the pathogenesis of vascular cognitive impairment. Geroscience. 2017;39:385–406. https://doi.org/10.1007/s11357-017-9981-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan F, Geurts AM, Pabbidi MR, Smith SV, Harder DR, Jacob H, Roman RJ. Zinc-finger nuclease knockout of dual-specificity protein phosphatase-5 enhances the myogenic response and autoregulation of cerebral blood flow in FHH.1BN rats. PLoS One. 2014;9:e112878. https://doi.org/10.1371/journal.pone.0112878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang H, Zhang C, Liu Y, Gao W, Wang S, Fang X, Guo Y, Li M, Liu R, Roman RJ, et al. Influence of dual-specificity protein phosphatase 5 on mechanical properties of rat cerebral and renal arterioles. Physiol Rep. 2020;8:e14345. https://doi.org/10.14814/phy2.14345.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kucharska A, Rushworth LK, Staples C, Morrice NA, Keyse SM. Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK. Cell Signal. 2009;21:1794–805. https://doi.org/10.1016/j.cellsig.2009.07.015.

    Article  CAS  PubMed  Google Scholar 

  14. Mandl M, Slack DN, Keyse SM. Specific inactivation and nuclear anchoring of extracellular signal-regulated kinase 2 by the inducible dual-specificity protein phosphatase DUSP5. Mol Cell Biol. 2005;25:1830–45. https://doi.org/10.1128/MCB.25.5.1830-1845.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle. 2009;8:1168–75. https://doi.org/10.4161/cc.8.8.8147.

    Article  CAS  PubMed  Google Scholar 

  16. Jo HJ, Yang JW, Park JH, Choi ES, Lim CS, Lee S, Han CY. Endoplasmic reticulum stress increases DUSP5 expression via PERK-CHOP pathway, leading to hepatocyte death. Int J Mol Sci. 2019;20(18):4369. https://doi.org/10.3390/ijms20184369.

  17. Liang M, Li Y, Zhang K, Zhu Y, Liang J, Liu M, Zhang S, Chen D, Liang H, Liang L, et al. Host factor DUSP5 potently inhibits dengue virus infection by modulating cytoskeleton rearrangement. Antiviral Res. 2023;215:105622. https://doi.org/10.1016/j.antiviral.2023.105622.

    Article  CAS  PubMed  Google Scholar 

  18. Ferguson BS, Wennersten SA, Demos-Davies KM, Rubino M, Robinson EL, Cavasin MA, Stratton MS, Kidger AM, Hu T, Keyse SM, et al. DUSP5-mediated inhibition of smooth muscle cell proliferation suppresses pulmonary hypertension and right ventricular hypertrophy. Am J Physiol Heart Circ Physiol. 2021;321:H382-h389. https://doi.org/10.1152/ajpheart.00115.2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu Z, Xu L, He Y, Xu K, Chen Z, Moqbel SAA, Ma C, Jiang L, Ran J, Wu L, et al. DUSP5 suppresses interleukin-1β-induced chondrocyte inflammation and ameliorates osteoarthritis in rats. Aging (Albany NY). 2020;12:26029–46. https://doi.org/10.18632/aging.202252.

    Article  CAS  PubMed  Google Scholar 

  20. Mengozzi M, Cervellini I, Villa P, Erbayraktar Z, Gökmen N, Yilmaz O, Erbayraktar S, Manohasandra M, Van Hummelen P, Vandenabeele P, et al. Erythropoietin-induced changes in brain gene expression reveal induction of synaptic plasticity genes in experimental stroke. Proc Natl Acad Sci U S A. 2012;109:9617–22. https://doi.org/10.1073/pnas.1200554109.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang J, Cao B, Han D, Sun M, Feng J. Long non-coding RNA H19 induces cerebral ischemia reperfusion injury via activation of autophagy. Aging Dis. 2017;8:71–84. https://doi.org/10.14336/ad.2016.0530.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Moon SJ, Lim MA, Park JS, Byun JK, Kim SM, Park MK, Kim EK, Moon YM, Min JK, Ahn SM, et al. Dual-specificity phosphatase 5 attenuates autoimmune arthritis in mice via reciprocal regulation of the Th17/Treg cell balance and inhibition of osteoclastogenesis. Arthritis Rheumatol. 2014;66:3083–95. https://doi.org/10.1002/art.38787.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang C, He X, Murphy SR, Zhang H, Wang S, Ge Y, Gao W, Williams JM, Geurts AM, Roman RJ, et al. Knockout of dual-specificity protein phosphatase 5 protects against hypertension-induced renal injury. J Pharmacol Exp Ther. 2019;370:206–17. https://doi.org/10.1124/jpet.119.258954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. An N, Bassil K, Al Jowf GI, Steinbusch HWM, Rothermel M, de Nijs L, Rutten BPF. Dual-specificity phosphatases in mental and neurological disorders. Prog Neurobiol. 2021;198:101906. https://doi.org/10.1016/j.pneurobio.2020.101906.

    Article  CAS  PubMed  Google Scholar 

  25. Hevroni D, Rattner A, Bundman M, Lederfein D, Gabarah A, Mangelus M, Silverman MA, Kedar H, Naor C, Kornuc M, et al. Hippocampal plasticity involves extensive gene induction and multiple cellular mechanisms. J Mol Neurosci. 1998;10:75–98. https://doi.org/10.1007/bf02737120.

    Article  CAS  PubMed  Google Scholar 

  26. Grupe A, Li Y, Rowland C, Nowotny P, Hinrichs AL, Smemo S, Kauwe JS, Maxwell TJ, Cherny S, Doil L, et al. A scan of chromosome 10 identifies a novel locus showing strong association with late-onset Alzheimer disease. Am J Hum Genet. 2006;78:78–88. https://doi.org/10.1086/498851.

    Article  CAS  PubMed  Google Scholar 

  27. Webster JA, Gibbs JR, Clarke J, Ray M, Zhang W, Holmans P, Rohrer K, Zhao A, Marlowe L, Kaleem M, et al. Genetic control of human brain transcript expression in Alzheimer disease. Am J Hum Genet. 2009;84:445–58. https://doi.org/10.1016/j.ajhg.2009.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fang X, Tang C, Zhang H, Border JJ, Liu Y, Shin SM, Yu H, Roman RJ, Fan F. Longitudinal characterization of cerebral hemodynamics in the TgF344-AD rat model of Alzheimer’s disease. Geroscience. 2023. https://doi.org/10.1007/s11357-023-00773-x.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gonzalez-Fernandez E, Liu Y, Auchus Alexander P, Fan F, Roman R. Vascular contributions to cognitive impairment and dementia: The emerging role of 20-HETE. Clin Sci. 2021;135:1929–44. https://doi.org/10.1042/CS20201033.

    Article  CAS  Google Scholar 

  30. Fang X, Zhang J, Roman RJ, Fan F. From 1901 to 2022, how far are we from truly understanding the pathogenesis of age-related dementia? GeroScience. 2022;44:1879–83. https://doi.org/10.1007/s11357-022-00591-7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fang X, Crumpler RF, Thomas KN, Mazique JN, Roman RJ, Fan F. Contribution of cerebral microvascular mechanisms to age-related cognitive impairment and dementia. Physiol Int. 2022. https://doi.org/10.1556/2060.2022.00020.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fan F, Roman RJ. Reversal of cerebral hypoperfusion: A novel therapeutic target for the treatment of AD/ADRD? Geroscience. 2021;43:1065–7. https://doi.org/10.1007/s11357-021-00357-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Crumpler R, Roman RJ, Fan F. Capillary stalling: A mechanism of decreased cerebral blood flow in AD/ADRD. J Exp Neurol. 2021;2:149–53. https://doi.org/10.33696/neurol.2.048.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shekhar S, Wang S, Mims PN, Gonzalez-Fernandez E, Zhang C, He X, Liu CY, Lv W, Wang Y, Huang J, et al. Impaired cerebral autoregulation-A common neurovascular pathway in diabetes may play a critical role in diabetes-related Alzheimer’s disease. Curr Res Diabetes Obes J. 2017;2:555587.

    PubMed  PubMed Central  Google Scholar 

  35. Wang S, Mims PN, Roman RJ, Fan F. Is beta-amyloid accumulation a cause or consequence of Alzheimer’s disease? J Alzheimers Parkinsonism Dement. 2016;1(2):007.

  36. Zhang H, Roman R, Fan F. Hippocampus is more susceptible to hypoxic injury: Has the Rosetta Stone of regional variation in neurovascular coupling been deciphered? GeroScience. 2021. https://doi.org/10.1007/s11357-021-00449-4.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lipecz A, Miller L, Kovacs I, Czakó C, Csipo T, Baffi J, Csiszar A, Tarantini S, Ungvari Z, Yabluchanskiy A, et al. Microvascular contributions to age-related macular degeneration (AMD): From mechanisms of choriocapillaris aging to novel interventions. Geroscience. 2019;41:813–45. https://doi.org/10.1007/s11357-019-00138-3.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kiss T, Nyúl-Tóth Á, Balasubramanian P, Tarantini S, Ahire C, DelFavero J, Yabluchanskiy A, Csipo T, Farkas E, Wiley G, et al. Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain. Geroscience. 2020;42:429–44. https://doi.org/10.1007/s11357-020-00177-1.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fulop GA, Ahire C, Csipo T, Tarantini S, Kiss T, Balasubramanian P, Yabluchanskiy A, Farkas E, Toth A, Nyúl-Tóth Á, et al. Cerebral venous congestion promotes blood-brain barrier disruption and neuroinflammation, impairing cognitive function in mice. Geroscience. 2019;41:575–89. https://doi.org/10.1007/s11357-019-00110-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang H, Border JJ, Fang X, Liu Y, Tang C, Gao W, Wang S, Shin SM, Guo Y, Zhang C, et al. Enhanced cerebral hemodynamics and cognitive function via knockout of dual-specificity protein phosphatase 5. J Pharm Pharmacol Res. 2023;7:49–61. https://doi.org/10.26502/fjppr.070.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wickramasekera NT, Gebremedhin D, Carver KA, Vakeel P, Ramchandran R, Schuett A, Harder DR. Role of dual-specificity protein phosphatase-5 in modulating the myogenic response in rat cerebral arteries. J Appl Physiol. 1985;2013(114):252–61. https://doi.org/10.1152/japplphysiol.01026.2011.

    Article  CAS  Google Scholar 

  42. Navarro-Orozco D, Sanchez-Manso JC. Neuroanatomy, middle cerebral artery. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

  43. Wang S, Zhang H, Liu Y, Li L, Guo Y, Jiao F, Fang X, Jefferson JR, Li M, Gao W, et al. Sex differences in the structure and function of rat middle cerebral arteries. Am J Physiol Heart Circ Physiol. 2020;318:H1219–32. https://doi.org/10.1152/ajpheart.00722.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Briones AM, Gonzalez JM, Somoza B, Giraldo J, Daly CJ, Vila E, Gonzalez MC, McGrath JC, Arribas SM. Role of elastin in spontaneously hypertensive rat small mesenteric artery remodelling. J Physiol. 2003;552:185–95. https://doi.org/10.1113/jphysiol.2003.046904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blomfield J, Farrar JF. The fluorescent properties of maturing arterial elastin. Cardiovasc Res. 1969;3:161–70. https://doi.org/10.1093/cvr/3.2.161.

    Article  CAS  PubMed  Google Scholar 

  46. Pourageaud F, Crabos M, Freslon JL. The elastic modulus of conductance coronary arteries from spontaneously hypertensive rats is increased. J Hypertens. 1997;15:1113–21. https://doi.org/10.1097/00004872-199715100-00009.

    Article  CAS  PubMed  Google Scholar 

  47. Sandow SL, Gzik DJ, Lee RM. Arterial internal elastic lamina holes: Relationship to function? J Anat. 2009;214:258–66. https://doi.org/10.1111/j.1469-7580.2008.01020.x.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fan F, Pabbidi MR, Ge Y, Li L, Wang S, Mims PN, Roman RJ. Knockdown of Add3 impairs the myogenic response of renal afferent arterioles and middle cerebral arteries. Am J Physiol Renal Physiol. 2017;312:F971–81. https://doi.org/10.1152/ajprenal.00529.2016.

    Article  CAS  PubMed  Google Scholar 

  49. Wang S, Jiao F, Border JJ, Fang X, Crumpler RF, Liu Y, Zhang H, Jefferson J, Guo Y, Elliott PS, et al. Luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, reverses cerebrovascular dysfunction and cognitive impairments in 18-mo-old diabetic animals. Am J Physiol Heart Circ Physiol. 2022;322:H246–59. https://doi.org/10.1152/ajpheart.00438.2021.

    Article  CAS  PubMed  Google Scholar 

  50. Fan F, Sun CW, Maier KG, Williams JM, Pabbidi MR, Didion SP, Falck JR, Zhuo J, Roman RJ. 20-Hydroxyeicosatetraenoic acid contributes to the inhibition of K+ channel activity and vasoconstrictor response to angiotensin II in rat renal microvessels. PLoS One. 2013;8:e82482. https://doi.org/10.1371/journal.pone.0082482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pires PW, Jackson WF, Dorrance AM. Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor. Am J Physiol Heart Circ Physiol. 2015;309:H127-136. https://doi.org/10.1152/ajpheart.00168.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee RM. Morphology of cerebral arteries. Pharmacol Ther. 1995;66:149–73. https://doi.org/10.1016/0163-7258(94)00071-a.

    Article  CAS  PubMed  Google Scholar 

  53. Wang S, Tang C, Liu Y, Border JJ, Roman RJ, Fan F. Impact of impaired cerebral blood flow autoregulation on cognitive impairment. Front Aging. 2022;3:1077302. https://doi.org/10.3389/fragi.2022.1077302.

  54. Fan F, Booz GW, Roman RJ. Aging diabetes, deconstructing the cerebrovascular wall. Aging (Albany NY). 2021;13:9158–9. https://doi.org/10.18632/aging.202963.

    Article  PubMed  Google Scholar 

  55. Marshall RS. Effects of altered cerebral hemodynamics on cognitive function. J Alzheimers Dis. 2012;32:633–42. https://doi.org/10.3233/jad-2012-120949.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants AG079336, AG057842, P20GM104357, and HL138685 from the National Institutes of Health, and TRIBA Faculty Startup Fund from Augusta University.

Author information

Authors and Affiliations

Authors

Contributions

HZ and FF conceived and designed research; HZ, CT, JB, YL, XF, and JRJ performed experiments; CT, HZ, JB, TJL, SB, AS, and FF analyzed data; CT, HZ, JB, RJR, and FF interpreted results; CT, HZ, JB, and FF prepared figures; CT, JB, HZ, and FF drafted the manuscript; CT, AG, CJ, TJL, SB, AS, SMS, HY, RJR, and FF edited and revised the manuscript; all authors approved the final version of the manuscript.

Corresponding author

Correspondence to Fan Fan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Zhang, H., Border, J.J. et al. Impact of knockout of dual-specificity protein phosphatase 5 on structural and mechanical properties of rat middle cerebral arteries: implications for vascular aging. GeroScience 46, 3135–3147 (2024). https://doi.org/10.1007/s11357-024-01061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-024-01061-y

Keywords

Navigation