Skip to main content
Log in

3-D simulations for maximum values of fluid distributions over separated contours on MHD peristaltic flow of pseudoplastic nanofluid in variable electric conductivity: solar applications

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In many industrial usages, nanofluid plays a paramount role in heat transfer rates. So technical studies for the peristaltic flow of MHD Pseudoplastic nanofluid are proposed. The channel walls are characterized by lower uniformity on the lower section and non-uniform asymmetry on the upper section. The law by Wiedemann Franz in some metal materials show that the electrical conductivity has indistinguishable performance of thermal conductivity. In the sense that the thermal energy of the electrons also moves freely and not the electric current. Accordingly, electrical conductivity the fluid electrical conductivity supposed to be varied with the fluid temperature and concertation. Porous medium, and chemical effects are considered. The fluid model re-arranged using dropping bars, \(\delta \ll 1,\) and long wavelengths, then the distributions of fluid are obtained in 3-D figures. Special case for separated contours line is studied, and the maximum values of fluid distributions are visualized. The results are verified in comparisons of trustful published contents of Hasona et al. (J Ther Sci Eng Appl 12(2):021018, 2020), and assured to be in a good manner. The bolus of fluid diminishing at high values of temperature-dependent electrical conductivity. Maximum values for the nanoparticle velocity can improve the solar absorption in solar energy cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Cooke, D.F., Goldring, A.B., Yamayoshi, I., Tsourkas, P., Recanzone, G.H., Tiriac, A., Pan, T., Simon, S.I., Krubitze, L.: Fabrication of an inexpensive, implantable cooling device for reversible brain deactivation in animals ranging from rodents to primates. J. Neuro. Physiol. 107, 3543–3558 (2012)

    Google Scholar 

  2. Hayat, T., Zahir, H., Mustafa, M., Alsaedi, A.: Peristaltic flow of Sutterby fluid in a vertical channel with radiative heat transfer and compliant walls: a numerical study. Res. in Phys. 6, 805–810 (2016)

    ADS  Google Scholar 

  3. Noreen, S., Kausarb, T., Tripathic, D., Ain, Q.U., Lu, D.: Heat transfer analysis on creeping flow Carreau fluid driven by peristaltic pumping in an inclined asymmetric channel. Ther. Sci. Eng. Prog. 17, 100486 (2020)

    Article  Google Scholar 

  4. Abdelsalam, S.I., Velasco-Hernandez, J.X., Zaher, A.Z.: Electro-magnetically modulated self-propulsion of swimming sperms via cervical canal. Biomech. Mode. Mechanobiol. 20, 861–878 (2021)

    Article  Google Scholar 

  5. Wang, H., Yao, N., Wang, B., Shih, T., Wang, X.: Homogeneous Venturi-effect concentrators for creeping flows: magnifying flow velocities and heat fluxes simultaneously. Appl. Ther. Eng. 206, 118012 (2022)

    Article  Google Scholar 

  6. Saleem, M., Haider, A.: Heat and mass transfer on the peristaltic transport of non-Newtonian fluid with creeping flow. Int. J. Heat. Mass. Trans. 68, 514–526 (2014)

    Article  Google Scholar 

  7. Javid, K., Ellahi, M., Al-Khaled, K., Raza, M., Khan, S.U., Khan, M.I., El-Zahar, E.R., Gouadria, S., Afzaal, M., Khan, M.I.: EMHD creeping rheology of nanofluid through a micro-channel via ciliated propulsion under porosity and thermal effects. Case Stud. Ther. Eng. 30, 101746 (2022)

    Article  Google Scholar 

  8. Hasona, W., Almalki, N.H., El-Shekhipy, A.A., Ibrahim, M.G.: Combined effects of variable thermal conductivity and electrical conductivity on peristaltic flow of pseudoplastic nanofluid in an inclined non-uniform asymmetric channel: applications to solar collectors. J. Ther. Sci. Eng. Appl. 12(2), 021018 (2020)

    Article  CAS  Google Scholar 

  9. Hayat, T., Iqbal, R., Tanveer, A., Alsaedi, A.: Soret and Dufour effects in MHD peristalsis of pseudoplastic nanofluid with chemical reaction. J. Mol. Liq. 220, 693–706 (2016)

    Article  CAS  Google Scholar 

  10. Turkyilmazoglu, M.: Heat and mass transfer on the MHD Fluid flow due to a porous rotating disk with hall current and variable properties. J. Heat Transf. Trans. ASME 133(2), 021701 (2011)

    Article  Google Scholar 

  11. Shah, Z., Islam, S., Ayaz, H., Khan, S.: Radiative heat and mass transfer analysis of micropolar nanofluid flow of Casson fluid between two rotating parallel plates with effects of hall current. J. Heat Trans. Trans. ASME 141(2), 022401 (2019)

    Article  CAS  Google Scholar 

  12. Ibrahim, M.G.: Adaptive computations to pressure profile for creeping flow of a non-Newtonian fluid with fluid nonconstant density effects. J. Heat Transf. Trans. ASME 144(10), 103601 (2022)

    Article  CAS  Google Scholar 

  13. Das, S., Barman, B., Jana, R.N., Makinde, O.D.: Hall and ion slip currents impact on electromagnetic blood flow conveying hybrid Nanoparticles through an endoscope with peristaltic waves. BioNanoScience 11(8), 770–792 (2021)

    Article  Google Scholar 

  14. Reddy, K.V., Gnaneswara, R.M., Makinde, O.D.: Heat and mass transfer of a peristaltic electro-osmotic flow of a couple stress fluid through an inclined asymmetric channel with effects of thermal radiation and chemical reaction. Periodica Polytech. Mech. Eng. 65(2), 151–162 (2021)

    Article  Google Scholar 

  15. Reddy, K.V., Reddy, R.G., Reddy, G.R., Makinde, O.D.: Analysis of Joule heating and chemical reaction effects in electroosmosis peristaltic transport of couple-stress, micropolar and nanofluids. J. Nanofluids 12(3), 796–808 (2023)

    Article  Google Scholar 

  16. Ashraf, M.U., Qasim, M., Shafie, S.: Magnetohydrodynamic (MHD) peristaltic flow of blood containing cylindrical shaped gold nanoparticles in a non-uniform tube in the presence of Joule dissipation. J. Magn. Magn. Mater. 578(15), 170708 (2023)

    Article  CAS  Google Scholar 

  17. Mahendra, D.L., Viharika, J.U., Ballari, R.V., Makinde, O.D., Vishwanatha, U.B.: Entropy analysis on the bioconvective peristaltic flow of gyrotactic microbes in Eyring–Powell nanofluid through an asymmetric channel. J. Indian Chem. Soc. 100(12), 100935 (2023)

    Article  CAS  Google Scholar 

  18. Das, S., Banu, A.S., Jana, R.N., Makinde, O.D.: Entropy analysis on MHD pseudo-plastic nanofluid flow through a vertical porous channel with convective heating. Alex. Eng. J. 54, 325–337 (2015)

    Article  Google Scholar 

  19. Ibrahim, M.G.: Concentration-dependent viscosity effect on magnet nano peristaltic flow of Powell–Eyring fluid in a divergent-convergent channel. Int. Commun. Heat Mass Trans. 134, 105987 (2022)

    Article  CAS  Google Scholar 

  20. Hussain, A., Farooq, N.: Gyrotactic micro-organisms swimming under the Hyperbolic Tangent Blood Nano Material and Solar biomimetic system over the Esophagus. Int. Commun. Heat Mass Trans. 141, 106579 (2023)

    Article  CAS  Google Scholar 

  21. Ibrahim, M.G.: Computational calculations for temperature and concentration-dependent density effects on creeping motion of Carreau fluid: biological applications. Wav. Ran. Compl. Med. 32 (2022)

  22. Noreen, S., Kausar, T., Tripathic, D.: Heat transfer analysis on creeping flow Carreau fluid driven by peristaltic pumping in an inclined asymmetric channel. Ther. Sci. Eng. Prog. 17, 100486 (2020)

    Article  Google Scholar 

  23. Hasona, W.M., El-Shekhipy, A.A., Ibrahim, M.G.: Combined effects of magnetohydrodynamic and temperature-dependent viscosity on peristaltic flow of Jeffrey nanofluid through a porous medium: applications to oil refinement. Int. J. Heat Mass Trans. 126, 700–714 (2018)

    Article  CAS  Google Scholar 

  24. Reddy, M.G., Makinde, O.D.: Magnetohydro-dynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel. J. Mol. Liq. 223, 1242–1248 (2016)

    Article  CAS  Google Scholar 

  25. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, Singapore (1960)

    Google Scholar 

  26. Málek, J., Rajagopal, K.R.: Mathematical issues concerning the Navier-Stokes equations and some of its generalizations. In: Dafermos, C., Feireisl, E. (eds.) Evolutionary Equations, Handbook of Differential Equations, vol. 2, pp. 1–91. Elsevier B. V., New York (2005)

    Chapter  Google Scholar 

  27. Qasim, M., Ali, Z., Wakif, A., Boulahia, Z.: Numerical simulation of MHD peristaltic flow with variable electrical conductivity and joule dissipation using generalized differential quadrature method. Commun. Theor. Phys. 71, 509 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University (Abha, Saudi Arabia) for funding this work through Research Groups Program under Grant Number (RGP.2/60/44)

Author information

Authors and Affiliations

Authors

Contributions

Sfina Nourreddine contributed to Visualization, Investigation, Validation, Writing – review & editing. M.G. Ibrahim contributed to Conceptualization, Methodology, Software, Data curation, Writing – original draft.

Corresponding author

Correspondence to M. G. Ibrahim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sfina, N., Ibrahim, M.G. 3-D simulations for maximum values of fluid distributions over separated contours on MHD peristaltic flow of pseudoplastic nanofluid in variable electric conductivity: solar applications. Arch Appl Mech 94, 391–406 (2024). https://doi.org/10.1007/s00419-023-02530-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02530-0

Keywords

Navigation