Skip to main content
Log in

Nonuniform Sampling Theorem for Non-decaying Signals in Mixed-Norm Spaces \(L_{\vec{p},\frac{1}{\omega }}(\mathbb{R}^{d})\)

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, combining the non-decaying properties with the mixed-norm properties, the revelent sampling problems are studied under the target space of \(L_{\vec{p},\frac{1}{\omega }}(\mathbb{R}^{d})\). Firstly, we will give a stability theorem for the shift-invariant subspace \(V_{\vec{p},\frac{1}{\omega }}(\varphi )\). Secondly, an ideal sampling in \(W_{\vec{p},\frac{1}{\omega }}^{s}(\mathbb{R}^{d})\) is proved, and thirdly, a convergence theorem (or algorithm) is shown for \(V_{\vec{p},\frac{1}{\omega }}(\varphi )\). It should be pointed out that the auxiliary function \(\varphi \) enjoys the membership in a Wiener amalgam space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43(4), 585–620 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  2. Aldroubi, A., Unser, M.: Sampling procedures in function spaces and asymptotic equivalence with Shannon’s sampling theory. Numer. Funct. Anal. Optim. 15(1), 1–21 (1994)

    Article  MathSciNet  Google Scholar 

  3. Aldroubi, A., Sun, Q., Tang, W.-S.: Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces. J. Fourier Anal. Appl. 11(2), 215–244 (2005)

    Article  MathSciNet  Google Scholar 

  4. Antonić, N., Ivec, I.: On the Hörmander-Mihlin theorem for mixed-norm Lebesgue spaces. J. Math. Anal. Appl. 433(1), 176–199 (2016)

    Article  MathSciNet  Google Scholar 

  5. Benedek, A., Panzone, R.: The space \(L^{P}\), with mixed norm. Duke Math. J. 28, 301–324 (1961)

    Article  MathSciNet  Google Scholar 

  6. Benedek, A., Calderón, A.P., Panzone, R.: Convolution operators on Banach space valued functions. Proc. Natl. Acad. Sci. USA 48, 356–365 (1962)

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  7. Benedetto, J., Zayed, A.: Sampling, Wavelets, and Tomography. Birkhäuser, Basel (2004)

    Book  Google Scholar 

  8. Chen, T., Sun, W.: Iterated weak and weak mixed-norm spaces with applications to geometric inequalities. J. Geom. Anal. 30, 4 (2020)

    Article  MathSciNet  Google Scholar 

  9. Chen, T., Sun, W.: Extension of multilinear fractional integral operators to linear operators on Lebesgue spaces with mixed norms (2020). https://doi.org/10.48550/arXiv.1902.04527

  10. Chen, W., Itoh, S., Shiki, J.: On sampling in shift invariant spaces. IEEE Trans. Inf. Theory 48(10), 2802–2810 (2002)

    Article  MathSciNet  Google Scholar 

  11. Cleanthous, G., Georgiadis, A.G.: Mixed-norm \(\alpha \)-modulation spaces. Trans. Am. Math. Soc. 373(5), 3323–3356 (2020)

    Article  MathSciNet  Google Scholar 

  12. Cleanthous, G., Georgiadis, A.G.: Product (\(\alpha _{1}\), \(\alpha _{2}\))-modulation spaces. Sci. China Math. 65(8), 1599–1640 (2022)

    Article  MathSciNet  Google Scholar 

  13. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Discrete decomposition of homogeneous mixed-norm Besov spaces. Contemp. Math. 693, 167–184 (2017)

    Article  MathSciNet  Google Scholar 

  14. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Anisotropic mixed-norm Hardy spaces. J. Geom. Anal. 27, 2758–2787 (2017)

    Article  MathSciNet  Google Scholar 

  15. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Fourier multipliers on anisotropic mixed-norm spaces of distributions. Math. Scand. 124(2), 289–304 (2019)

    Article  MathSciNet  Google Scholar 

  16. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Molecular decomposition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators. Appl. Comput. Harmon. Anal. 47(2), 447–480 (2019)

    Article  MathSciNet  Google Scholar 

  17. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Molecular decomposition and Fourier multipliers for holomorphic Besov and Triebel–Lizorkin spaces. Monatshefte Math. 188, 467–493 (2019)

    Article  MathSciNet  Google Scholar 

  18. Folland, G.B.: Real Analysis p. 193. Wiley, New York (1984)

    Google Scholar 

  19. Fuehr, H., Xian, J.: Relevant sampling in finitely generated shift-invariant spaces. J. Approx. Theory 240, 1–15 (2019)

    Article  MathSciNet  Google Scholar 

  20. Georgiadis, A.G., Nielsen, M.: Pseudodifferential operators on mixed-norm Besov and Triebel-Lizorkin spaces. Math. Nachr. 289(16), 2019–2036 (2016)

    Article  MathSciNet  Google Scholar 

  21. Grafakos, L.: Classical Fourier Ananlysis, 2nd edn. Springer, Berlin (2008). pp. 19–21, 98–104, 113

    Book  Google Scholar 

  22. Gröchenig, K.: Weight functions in time-frequency analysis. In: Rodino, L., Wong, M.W. (eds.) Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis. Fields Institute Comm., vol. 52, pp. 343–366 (2007)

    Google Scholar 

  23. Gröchenig, K.: Shift-invariant spaces of entire functions. In: Abakumov, E., Baranov, A., Borichev, A., Fedorovskiy, K., Ortega-Cerda, J. (eds.) Extended Abstracts Fall 2019. Trends in Mathematics, vol. 12. Birkhäuser, Cham (2021). https://doi.org/10.1007/978-3-030-74417-5

    Chapter  Google Scholar 

  24. Gröchenig, K., Romero, J.L., Stöeckler, J.: Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions. Invent. Math. 211, 1119–1148 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. Gröchenig, K., Romero, J.L., Stöeckler, J.: Sharp results on sampling with derivatives in shift-invariant spaces and multi-window Gabor frames. Constr. Approx. 51, 1–25 (2020)

    Article  MathSciNet  Google Scholar 

  26. Han, Y., Liu, B., Zhang, Q.: A sampling theory for non-decaying signals in mixed Lebesgue spaces \(L_{p,q}(\mathbb{R}^{d+1})\). Appl. Anal. 101(1), 173–191 (2020)

    Article  Google Scholar 

  27. Hörmander, L.: Estimates for translation invariant operators in \(L_{p}\) spaces. Acta Math. 104, 93–140 (1960)

    Article  MathSciNet  Google Scholar 

  28. Huang, L.: The Mihlin multiplier theorem on anisotropic mixed-norm hardy spaces. Bull. Malays. Math. Sci. Soc. 46(4) (2023)

  29. Huang, L., Yang, D.: On function spaces with mixed norms-a survey. J. Math. Study 54, 262–336 (2021)

    Article  MathSciNet  Google Scholar 

  30. Huang, L., Liu, J., Yang, D., Yuan, W.: Atomic and Littlewood-Paley decompositions of anisotropic mixed-norm Hardy spaces and their applications. J. Geom. Anal. 29, 1991–2067 (2019)

    Article  MathSciNet  Google Scholar 

  31. Huang, L., Liu, J., Yang, D., Yuan, W.: Dual spaces of anisotropic mixed-norm Hardy spaces. Proc. Am. Math. Soc. 147(3), 1201–1215 (2019)

    Article  MathSciNet  Google Scholar 

  32. Jerri, A.J.: The Shannon sampling theorem-its various extensions and applications: a tutorial review. Proc. IEEE 65(11), 1565–1596 (1977)

    Article  ADS  Google Scholar 

  33. Jia, R.Q.: Shift-invariant spaces on the real line. Proc. Am. Math. Soc. 125, 785–793 (1997)

    Article  MathSciNet  Google Scholar 

  34. Jia, R.Q., Micchelli, C.A.: Using the refinement equations for the construction of pre-wavelets II: powers of two. In: Laurent, P.J., Le Mehaute, A., Schumaker, L.L. (eds.) Curves and Surfaces, pp. 209–246. Academic Press, New York (1991)

    Chapter  Google Scholar 

  35. Johnsen, J., Sickel, W.: A direct proof of Sobolev embeddings for quasi-homogeneous Lizorkin-Triebel spaces with mixed norms. J. Funct. Spaces Appl. 5(2), 183–198 (2007)

    Article  MathSciNet  Google Scholar 

  36. Johnsen, J., Sickel, W.: On the trace problem for Lizorkin-Triebel spaces with mixed norms. Math. Nachr. 281(5), 669–696 (2008)

    Article  MathSciNet  Google Scholar 

  37. Johnsen, J., Munch, S., Sickel, W.: Anisotropic, mixed-norm Lizorkin-Triebel spaces and diffeomorphic maps. J. Funct. Spaces 2014, 964794 (2014)

    MathSciNet  Google Scholar 

  38. Johnsen, J., Munch, S., Sickel, W.: Anisotropic Lizorkin-Triebel spaces with mixed norms-traces on smooth boundaries. Math. Nachr. 288(11–12), 1327–1359 (2015)

    Article  MathSciNet  Google Scholar 

  39. Kang, S., Kwon, K.H.: Generalized average sampling in shift invariant spaces. J. Math. Anal. Appl. 377(1), 70–78 (2011)

    Article  MathSciNet  Google Scholar 

  40. Li, R., Liu, Y.: Wavelet optimal estimations for a density with some additive noises. Appl. Comput. Harmon. Anal. 36(3), 416–433 (2014)

    Article  MathSciNet  Google Scholar 

  41. Li, R., Liu, B., Liu, R., Zhang, Q.: Nonuniform sampling in principal shift-invariant subspaces of mixed Lebesgue spaces \(L_{p,q}(\mathbb{R}^{d+1})\). J. Math. Anal. Appl. 453, 928–941 (2017)

    Article  MathSciNet  Google Scholar 

  42. Liu, Y.: Irregular sampling for spline wavelet subspaces. IEEE Trans. Inf. Theory 42, 623–627 (1996)

    Article  MathSciNet  Google Scholar 

  43. Liu, Y., Walter, G.G.: Irregular sampling in wavelet subspaces. J. Fourier Anal. Appl. 2, 181–189 (1996)

    Article  MathSciNet  Google Scholar 

  44. Nashed, M.Z., Sun, Q.: Sampling and reconstruction of signals in a reproducing kernel subspace of \(L_{p}(\mathbb{R}^{d})\). J. Funct. Anal. 258(7), 2422–2452 (2010)

    Article  MathSciNet  Google Scholar 

  45. Nashed, M.Z., Sun, Q., Xian, J.: Convolution sampling and reconstruction of signals in a reproducing kernel subspace. Proc. Am. Math. Soc. 141(6), 1995–2007 (2013)

    Article  MathSciNet  Google Scholar 

  46. Nguyen, H.Q., Unser, M.: A sampling theory for non-decaying signals. Appl. Comput. Harmon. Anal. 43(1), 76–93 (2017)

    Article  MathSciNet  Google Scholar 

  47. Saleh, S.A., Rahman, M.A.: An Introduction to Wavelet Modulated Inverters. IEEE Press, Piscataway (2010)

    Book  Google Scholar 

  48. Shannon, C.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  49. Sun, Q.: Local reconstruction for sampling in shift-invariant spaces. Adv. Comput. Math. 32(3), 335–352 (2010)

    Article  MathSciNet  Google Scholar 

  50. Unser, M.: Sampling-50years after Shannon. Proc. IEEE 88(4), 569–587 (2000)

    Article  Google Scholar 

  51. Unser, M., Aldroubi, A.: A general sampling theory for nonideal acquisition devices. IEEE Trans. Signal Process. 42(11), 2915–2925 (1994)

    Article  ADS  Google Scholar 

  52. Unser, M., Aldroubi, A.: A review of wavelets in biomedical applications. Proc. IEEE 84(4), 626–638 (1996)

    Article  Google Scholar 

  53. Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: part I-theory. IEEE Trans. Signal Process. 41(2), 821–833 (1993)

    Article  ADS  Google Scholar 

  54. Yang, J., Wei, W.: Random sampling in shift invariant spaces. J. Math. Anal. Appl. 398(1), 26–34 (2013)

    Article  MathSciNet  Google Scholar 

  55. Zayed, A.I., Garcia, A.G.: Nonuniform sampling of bandlimited signals with polynomial growth on the real axis. IEEE Trans. Inf. Theory 43(5), 1717–1721 (1997)

    Article  MathSciNet  Google Scholar 

  56. Zhang, Q., Sun, W.: Invariance of shift-invariant spaces. Sci. China Math. 55, 1395–1401 (2012)

    Article  MathSciNet  Google Scholar 

  57. Zhang, Q., Sun, W.: Reconstruction of splines from nonuniform samples. Acta Math. Sin. Engl. Ser. 35, 245–256 (2019)

    Article  MathSciNet  Google Scholar 

  58. Zhao, J., Chen, Y.: New decomposition theorem and new inequalities induced by synthesis-type modulus of smoothness. J. Nonlinear Convex Anal. 23(6), 1151–1166 (2022)

    MathSciNet  Google Scholar 

  59. Zhao, J., Du, W.-S., Chen, Y.: New generalizations and results in shift-invariant subspaces of mixed-norm Lebesgue spaces \(L_{\vec{p}}(\mathbb{R}^{d})\). Mathematics 9(3), 227 (2021)

    Article  Google Scholar 

  60. Zhao, J., Kostic, M., Du, W.-S.: On generalizations of sampling theorem and stability theorem in shift-invariant subspaces of Lebesgue and Wiener amalgam spaces with mixed-norms. Symmetry 13, 331 (2021)

    Article  ADS  Google Scholar 

  61. Zhao, J., Qu, G., Du, W.-S., Chen, Y.: Approximation of kernel projection operators in shift-invariant subspaces of function spaces with mixed norms. Banach J. Math. Anal. 17(4) (2023)

Download references

Acknowledgements

The authors would like to thank the referees for carefully reading the manuscript, giving valuable comments and suggestions to improve the results.

Funding

This project is partially supported by the Natural Science Foundation of Tianjin City, China (Grant No. 18JCYBJC16300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjian Zhao.

Ethics declarations

Competing Interests

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J. Nonuniform Sampling Theorem for Non-decaying Signals in Mixed-Norm Spaces \(L_{\vec{p},\frac{1}{\omega }}(\mathbb{R}^{d})\). Acta Appl Math 189, 2 (2024). https://doi.org/10.1007/s10440-023-00631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-023-00631-0

Keywords

Mathematics Subject Classification

Navigation