Skip to main content
Log in

A novel intelligent optimization-based maximum power point tracking control of photovoltaic system under partial shading conditions

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Due to its abundant natural supply and environmentally friendly features, solar photovoltaic (PV) production based on renewable energy is the ideal substitute for conventional energy sources. The efficiency of solar power generation under partial shading conditions (PSCs) is significantly increased by maximizing power extraction from the PV system. The maximum power point tracking (MPPT) method is to track maximum PowerPoint (MPP). This research proposes a photovoltaic MPPT control in partial shading conditions using Loxo-Canis (LOXOCAN) optimization algorithm. The ultimate goal of the novel method is to track the solar photovoltaic system’s maximum power point under conditions of partial shading using the LOXOCAN algorithm. The proposed LOXOCAN algorithm is a combination of Elephant-herd optimization (EHO) and Coyote Optimization Algorithm (COA). The \(K_{p} ,K_{i} ,\) and \(K_{d}\) parameters of the PID controller of the MPPT controller will be tuned to their optimum values using the proposed optimization strategy. Higher MPPT performance and a quick convergence at the global maxima are shown in the proposed Loxo-Canis approach. Also, the recommended hybrid Loxo-Canis MPPT approach offers faster MPPT, less computational work, and higher efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Abbreviations

ChOA:

Chimp optimization algorithm

COA:

Coyote optimization

CS:

Cuckoo search

CSO:

Cat swarm optimization

EGWO:

Enhanced grey wolf optimization

EHO:

Elephant-herd optimization

GMPP:

Global maximum power point

GMPPT:

Global power point tracking

GOA:

Grasshopper optimization algorithm

GWO:

Grey wolf optimization

HC:

Hill climbing

ICSA:

Improved cuckoo search algorithm

INC:

Incremental conductance

LOXOCAN:

Loxo-Canis

MGWO:

Modified grey wolf optimization

MHA:

Meta-heuristic algorithms

MLFO:

Modified Levy flight optimization

MPPT:

Maximum power point tracking

OGWO:

Original GWO

P&O:

Perturb and observe method

P&O:

Perturb and observe

PS:

Partial shading

PSC:

Partial shading condition

PSCs:

Partial shadowing conditions

PSO:

Particle swarm optimization

PV:

Photovoltaic

P–V:

Power–voltage

RES:

Renewable energy sources

SPV:

Solar photovoltaic

References

  1. Hsieh, G.-C., Hsieh, H.-I., Tsai, C.-Y., & Wang, C.-H. (2012). Photovoltaic power-increment-aided incremental-conductance MPPT with two-phased tracking. IEEE Transactions on Power Electronics, 28(6), 2895–2911.

    Article  ADS  Google Scholar 

  2. Millah, I. S., Chang, P. C., Teshome, D. F., Subroto, R. K., Lian, K. L., & Lin, J.-F. (2022). An enhanced grey wolf optimization algorithm for photovoltaic maximum power point tracking control under partial shading conditions. IEEE Open Journal of the Industrial Electronics Society, 3, 392–408.

    Article  Google Scholar 

  3. Femia, N., Petrone, G., Spagnuolo, G., & Vitelli, M. (2005). Optimization of perturb and observe maximum power point tracking method. IEEE Transactions on Power Electronics, 20(4), 963–973.

    Article  ADS  Google Scholar 

  4. Patel, H., & Agarwal, V. (2008). MATLAB-based modeling to study the effects of partial shading on PV array characteristics. IEEE Transactions on Energy Conversion, 23(1), 302–310.

    Article  ADS  Google Scholar 

  5. Ahmed, J., & Salam, Z. (2015). An improved method to predict the position of maximum power point during partial shading for PV arrays. IEEE Transactions on Industrial Informatics, 11(6), 1378–1387.

    Article  Google Scholar 

  6. Chiu, H.-J., Lo, Y.-K., Lee, T.-P., Chen, Q. S., Yu, W. L., Lee, J.-X., Shih, F., & Mou, S.-C. (2011). A battery charger with maximum power point tracking function for low-power photovoltaic system applications. International Journal of Circuit Theory and Applications, 39(3), 241–2565.

    Article  Google Scholar 

  7. González-Castaño, C., Restrepo, C., Kouro, S., & Rodriguez, J. (2021). MPPT algorithm based on artificial bee colony for PV system. IEEE Access, 9, 43121–43133.

    Article  Google Scholar 

  8. Bauwens, P., & Doutreloigne, J. (2014). Reducing partial shading power loss with an integrated smart bypass. Solar Energy, 103, 134–142.

    Article  ADS  Google Scholar 

  9. Nagadurga, T., Narasimham, P. V. R. L., Vakula, V. S., Devarapalli, R., & Márquez, F. P. G. (2021). Enhancing global maximum power point of solar photovoltaic strings under partial shading conditions using chimp optimization algorithm. Energies, 14(14), 4086.

    Article  Google Scholar 

  10. Nagadurga, T., Narasimham, P. V. R. L., & Vakula, V. S. (2021). Global maximum power point tracking of solar photovoltaic strings under partial shading conditions using cat swarm optimization technique. Sustainability, 13(19), 11106.

    Article  Google Scholar 

  11. Charin, C., Ishak, D., Mohd Zainuri, M. A., & Ismail, B. (2021). Modified levy flight optimization for a maximum power point tracking algorithm under partial shading. Applied Sciences, 11(3), 992.

    Article  CAS  Google Scholar 

  12. Subramanian, A., & Raman, J. (2021). Grasshopper optimization algorithm tuned maximum power point tracking for solar photovoltaic systems. Journal of Ambient Intelligence and Humanized Computing, 12(9), 8637–8645.

    Article  Google Scholar 

  13. Verma, P., Alam, A., Sarwar, A., Tariq, M., Vahedi, H., Gupta, D., Ahmad, S., & Shah Noor Mohamed, A. (2021). Meta-heuristic optimization techniques used for maximum power point tracking in solar PV system. Electronics, 10(19), 2419.

    Article  Google Scholar 

  14. Motamarri, R., Bhookya, N., & ChittiBabu, B. (2021). Modified grey wolf optimization for global maximum power point tracking under partial shading conditions in photovoltaic system. International Journal of Circuit Theory and Applications, 49(7), 1884–1901.

    Article  Google Scholar 

  15. Eltamaly, A. M. (2021). An improved cuckoo search algorithm for maximum power point tracking of photovoltaic systems under partial shading conditions. Energies, 14(4), 953.

    Article  Google Scholar 

  16. Kumar, V., Ghosh, S., Swami Naidu, N. K., Kamal, S., Saket, R. K., & Nagar, S. K. (2021). Load voltage-based MPPT technique for standalone PV systems using adaptive step. International Journal of Electrical Power & Energy Systems, 128, 106732.

    Article  Google Scholar 

  17. Toumi, D., Benattous, D., Ibrahim, A., Abdul-Ghaffar, H. I., Obukhov, S., Aboelsaud, R., Labbi, Y., & Diab, A. A. Z. (2021). Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system. Energy Reports, 7, 4951–4960.

    Article  Google Scholar 

  18. Nayak, B., Mohapatra, A., & Mohanty, K. B. (2017). Selection criteria of DC–DC converter and control variable for MPPT of PV system utilized in heating and cooking applications. Cogent Engineering, 4(1), 1363357.

    Article  Google Scholar 

  19. Osmani, K., Haddad, A., Lemenand, T., Castanier, B., & Ramadan, M. (2021). An investigation on maximum power extraction algorithms from PV systems with corresponding DC–DC converters. Energy, 224, 120092.

    Article  Google Scholar 

  20. Ramki, T., & Tripathy L. N. (2015). Comparison of different DC–DC converter for MPPT application of photovoltaic system. In International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO) (pp. 1–6).

  21. Peng, L., Sun, Y., & Meng, Z. (2014). An improved model and parameters extraction for photovoltaic cells using only three state points at standard test condition. Journal of power Sources, 248, 621–631.

    Article  CAS  ADS  Google Scholar 

  22. Ishaque, K., Salam, Z., & Taheri, H. (2011). Modeling and simulation of photovoltaic (PV) system during partial shading based on a two-diode model. Simulation Modelling Practice and Theory, 19(7), 1613–1626.

    Article  Google Scholar 

  23. Balasubramanian, I. R., Ilango Ganesan, S., & Chilakapati, N. (2014). Impact of partial shading on the output power of PV systems under partial shading conditions. IET power Electronics, 7(3), 657–666.

    Article  Google Scholar 

  24. Pathak, D., Sagar, G., & Gaur, P. (2020). An application of intelligent non-linear discrete-PID controller for MPPT of PV system. Procedia Computer Science, 167, 1574–1583.

    Article  Google Scholar 

  25. Li, J., Lei, H., Alavi, A. H., & Wang, G.-G. (2020). Elephant herding optimization: Variants, hybrids, and applications. Mathematics, 8(9), 1415.

    Article  Google Scholar 

  26. Tuba, E., & Stanimirovic, Z. (2017). Elephant herding optimization algorithm for support vector machine parameters tuning. In 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) (pp. 1–4). IEEE.

  27. Ismaeel, A. A. K., Elshaarawy, I. A., Houssein, E. H., Ismail, F. H., & Hassanien, A. E. (2019). Enhanced elephant herding optimization for global optimization. IEEE Access, 7, 34738–34752.

    Article  Google Scholar 

  28. Güvenç, U., & Kaymaz, E. (2019). Economic dispatch integrated wind power using coyote optimization algorithm. 2019 7th international Istanbul smart grids and cities congress and fair (ICSG) (pp. 179–183). IEEE.

    Chapter  Google Scholar 

  29. Pierezan, J., & Coelho, L. D. S. (2018). Coyote optimization algorithm: a new metaheuristic for global optimization problems. 2018 IEEE congress on evolutionary computation (CEC) (pp. 1–8). IEEE.

    Google Scholar 

  30. Abdelwanis, M. I., Abaza, A., El-Sehiemy, R. A., Ibrahim, M. N., & Rezk, H. (2020). Parameter estimation of electric power transformers using coyote optimization algorithm with experimental verification. IEEE Access, 8, 50036–50044.

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific funding.

Author information

Authors and Affiliations

Authors

Contributions

AMB conceived the presented idea and designed the analysis. Also, he carried out the experiment and wrote the manuscript with support from RLJ. All authors discussed the results and contributed to the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mary Beula Aron.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The conducted research is not related to either human or animal use.

Informed consent

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aron, M.B., Louis, J.R. A novel intelligent optimization-based maximum power point tracking control of photovoltaic system under partial shading conditions. Analog Integr Circ Sig Process 118, 489–503 (2024). https://doi.org/10.1007/s10470-023-02216-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-023-02216-1

Keywords

Navigation