Skip to main content

Advertisement

Log in

Lack of Annexin A1 Exacerbates Inflammatory Response in Acute Endometritis Model

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Annexin A1 (AnxA1) is a glucocorticoid-inducible protein and an important endogenous modulator of inflammation. However, its effect in the endometrial microenvironment is poorly explained. This study aimed to evaluate the role of endogenous AnxA1 in an endometritis mouse model induced by lipopolysaccharide (LPS). Female C57BL/6 wild-type (WT) and AnxA1−/− mice were divided into two groups: SHAM and LPS. To induce endometritis, mice received a vaginal infusion of 50 μL of LPS (1 mg/mL) dissolved in phosphate-buffered saline. After 24 h, the mice were euthanized, and blood and uteri samples were collected. The endometrium inflammatory scores were significantly increased in the LPS-treated group. AnxA1−/− mice from the LPS group demonstrated a significant increase in the number of degranulated mast cell levels compared to AnxA1−/− SHAM mice. The Western blotting analysis revealed that a lack of AnxA1 promoted the upregulation of NLRP3 and pro-IL-1β in the acute endometritis animal model compared to WT LPS animals. LPS-induced endometritis increased the number of blood peripheral leukocytes in both WT and AnxA1−/− mice compared with SHAM group mice (p < 0.001). AnxA1−/− mice also showed increased plasma levels of IL-1β (p < 0.01), IL-6, IL-10, IL-17, and TNF-α (p < 0.05) following LPS-induced endometritis. In conclusion, a lack of endogenous AnxA1 exacerbated the inflammatory response in an endometritis model via NLRP3 dysregulation, increased uterine mast cell activation, and plasma pro-inflammatory cytokine release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Kitaya, K., et al. 2018. Endometritis: new time, new concepts. Fertility and Sterility 110 (3): 344–350.

    Article  PubMed  Google Scholar 

  2. Kiviat, N.B., et al. 1990. Endometrial histopathology in patients with culture-proved upper genital tract infection and laparoscopically diagnosed acute salpingitis. American Journal of Surgical Pathology 14 (2): 167–175.

    Article  CAS  PubMed  Google Scholar 

  3. Haggerty, C.L., et al. 2003. Endometritis does not predict reproductive morbidity after pelvic inflammatory disease. American Journal of Obstetrics and Gynecology 188 (1): 141–148.

    Article  PubMed  Google Scholar 

  4. Greenwood, S.M., and J.J. Moran. 1981. Chronic endometritis: morphologic and clinical observations. Obstetrics and Gynecology 58 (2): 176–184.

    CAS  PubMed  Google Scholar 

  5. Singh, N., and A. Sethi. 2022. Endometritis - diagnosis, treatment and its impact on fertility - a scoping review. JBRA Assisted Reproduction 26 (3): 538–546.

    PubMed  PubMed Central  Google Scholar 

  6. Lampiasi, N. 2022. Interactions between macrophages and mast cells in the female reproductive system. International Journal of Molecular Sciences 23 (10): 5414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, W., et al. 2020. Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nature Medicine 26 (10): 1644–1653.

    Article  CAS  PubMed  Google Scholar 

  8. Zenclussen, A.C., and G.J. Hämmerling. 2015. Cellular regulation of the uterine microenvironment that enables embryo implantation. Frontiers in Immunology 6: 321.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sugimoto, M.A., et al. 2016. Annexin A1 and the resolution of inflammation: modulation of neutrophil recruitment, apoptosis, and clearance. Journal of Immunology Research 2016: 8239258.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Perretti, M., and F. D’Acquisto. 2009. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nature Reviews Immunology 9 (1): 62–70.

    Article  CAS  PubMed  Google Scholar 

  11. Oliani, S.M., et al. 2002. Annexin 1 localisation in tissue eosinophils as detected by electron microscopy. Mediators of Inflammation 11 (5): 287–292.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gil, C.D., et al. 2006. Interaction of human neutrophils with endothelial cells regulates the expression of endogenous proteins annexin 1, galectin-1 and galectin-3. Cell Biology International 30 (4): 338–344.

    Article  CAS  PubMed  Google Scholar 

  13. Hannon, R., et al. 2003. Aberrant inflammation and resistance to glucocorticoids in annexin 1-/- mouse. The FASEB Journal 17 (2): 253–255.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, Y.H., et al. 2013. Deficiency of annexin A1 in CD4+ T cells exacerbates T cell-dependent inflammation. The Journal of Immunology 190 (3): 997–1007.

    Article  CAS  PubMed  Google Scholar 

  15. Gimenes, A.D., et al. 2015. Beneficial effect of annexin A1 in a model of experimental allergic conjunctivitis. Experimental Eye Research 134: 24–32.

    Article  CAS  PubMed  Google Scholar 

  16. Gavins, F.N., et al. 2012. Leukocyte recruitment in the brain in sepsis: involvement of the annexin 1-FPR2/ALX anti-inflammatory system. The FASEB Journal 26 (12): 4977–4989.

    Article  CAS  PubMed  Google Scholar 

  17. Sanches, J.M., et al. 2020. Annexin A1 regulates NLRP3 inflammasome activation and modifies lipid release profile in isolated peritoneal macrophages. Cells 9 (4): 926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, C., et al. 2022. Annexin A1 inhibition facilitates NLRP3 inflammasome activation in arsenic-induced insulin resistance in rat liver. Environmental Toxicology and Pharmacology 96: 103981.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu, M., et al. 2022. Crosstalk between RPE cells and choroidal endothelial cells via the ANXA1/FPR2/SHP2/NLRP3 inflammasome/pyroptosis axis promotes choroidal neovascularization. Inflammation 45 (1): 414–427.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Z., et al. 2022. Annexin-A1 tripeptide attenuates surgery-induced neuroinflammation and memory deficits through regulation the NLRP3 inflammasome. Frontiers in Immunology 13: 856254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Broz, P., and V.M. Dixit. 2016. Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews Immunology 16 (7): 407–420.

    Article  CAS  PubMed  Google Scholar 

  22. Swanson, K.V., et al. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology 19 (8): 477–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, Y., et al. 2019. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death & Disease 10 (2): 128.

    Article  Google Scholar 

  24. Liang, Y., et al. 2018. Alpinetin ameliorates inflammatory response in LPS-induced endometritis in mice. International Immunopharmacology 62: 309–312.

    Article  CAS  PubMed  Google Scholar 

  25. Corrêa, M.P., et al. 2022. Expression pattern and immunoregulatory roles of galectin-1 and galectin-3 in atopic dermatitis and psoriasis. Inflammation 45 (3): 1133–1145.

    Article  PubMed  Google Scholar 

  26. Sridharan, G., and A.A. Shankar. 2012. Toluidine blue: a review of its chemistry and clinical utility. Journal of Oral and Maxillofacial Pathology 16 (2): 251–255.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gao, Y., et al. 2023. Melatonin alleviates lipopolysaccharide-induced endometritis by inhibiting the activation of NLRP3 inflammasome through autophagy. Animals (Basel) 13 (15): 2449.

    Article  PubMed  Google Scholar 

  28. Zhang, M., et al. 2023. NLRP3 inflammasome-mediated pyroptosis induce Notch signal activation in endometriosis angiogenesis. Molecular and Cellular Endocrinology 574: 111952.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, H., et al. 2019. Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling. Journal of Zhejiang University. Science. B 20 (10): 816–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karmakar, M., et al. 2015. Neutrophil IL-1β processing induced by pneumolysin is mediated by the NLRP3/ASC inflammasome and caspase-1 activation and is dependent on K+ efflux. The Journal of Immunology 194 (4): 1763–1775.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, K.W., et al. 2016. The murine neutrophil NLRP3 inflammasome is activated by soluble but not particulate or crystalline agonists. European Journal of Immunology 46 (4): 1004–1010.

    Article  CAS  PubMed  Google Scholar 

  32. Sanches, J.M., et al. 2021. The role of annexin A1 in Candida albicans and Candida auris infections in murine neutrophils. Microbial Pathogenesis 150: 104689.

    Article  CAS  PubMed  Google Scholar 

  33. Espinosa-Riquer, Z.P., et al. 2020. Signal transduction pathways activated by innate immunity in mast cells: translating sensing of changes into specific responses. Cells 9 (11): 2411.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sawatsubashi, M., et al. 2000. Association of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell carcinoma. Virchows Archiv 436 (3): 243–248.

    Article  CAS  PubMed  Google Scholar 

  35. Elieh Ali Komi, D., et al. 2020. Mast cell biology at molecular level: a comprehensive review. Clinical Reviews in Allergy and Immunology 58 (3): 342–365.

    Article  PubMed  Google Scholar 

  36. Parisi, J.D.S., et al. 2019. Lack of endogenous annexin A1 increases mast cell activation and exacerbates experimental atopic dermatitis. Cells 8 (1): 51.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yazid, S., et al. 2010. Anti-allergic drugs and the annexin-A1 system. Pharmacological Reports 62 (3): 511–517.

    Article  CAS  PubMed  Google Scholar 

  38. Yazid, S., et al. 2013. Anti-allergic cromones inhibit histamine and eicosanoid release from activated human and murine mast cells by releasing Annexin A1. PLoS ONE 8 (3): e58963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Di, M., et al. 2022. Epigallocatechin-3-gallate (EGCG) attenuates inflammatory responses and oxidative stress in lipopolysaccharide (LPS)-induced endometritis via silent information regulator transcript-1 (SIRT1)/nucleotide oligomerization domain (NOD)-like receptor pyrin domain-containing 3 (NLRP3) pathway. Journal of Biochemical and Molecular Toxicology 36 (12): e23203.

    Article  CAS  PubMed  Google Scholar 

  40. Hu, X., et al. 2018. Melatonin inhibits endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation in lipopolysaccharide-induced endometritis in mice. International Immunopharmacology 64: 101–109.

    Article  CAS  PubMed  Google Scholar 

  41. Li, L., et al. 2023. Protective effect of the total flavonoids from Clinopodium chinense against LPS-induced mice endometritis by inhibiting NLRP3 inflammasome-mediated pyroptosis. Journal of Ethnopharmacology 312: 116489.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, Z., et al. 2023. UFM1 inhibits the activation of the pyroptosis in LPS-induced goat endometritis. Theriogenology 196: 50–58.

    Article  CAS  PubMed  Google Scholar 

  43. Shen, W., et al. 2022. Neutrophil extracellular traps mediate bovine endometrial epithelial cell pyroptosis in dairy cows with endometritis. International Journal of Molecular Sciences 23 (22): 14013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo, X., et al. 2021. NLRP3 inflammasome activation of mast cells by estrogen. Frontiers in Immunology 12: 749979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patel, H.B., et al. 2012. The impact of endogenous annexin A1 on glucocorticoid control of inflammatory arthritis. Annals of the Rheumatic Diseases 71 (11): 1872–1880.

    Article  CAS  PubMed  Google Scholar 

  46. Tortorella, C., et al. 2014. Interleukin-6, interleukin-1β, and tumor necrosis factor α in menstrual effluents as biomarkers of chronic endometritis. Fertility and Sterility 101 (1): 242–247.

    Article  CAS  PubMed  Google Scholar 

  47. Hickey, D.K., et al. 2013. Mouse estrous cycle regulation of vaginal versus uterine cytokines, chemokines, α-/β-defensins and TLRs. Innate Immunity 19 (2): 121–131.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Fundação ao de Amparo à Pesquisa do Estado de São Paulo - FAPESP [grant number 22/02327-6]. RRV was supported by the Coordenação ao de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Finance code 001) scholarship. CDG is a researcher fellow of the Conselho Nacional de Desenvolvimento Científico e Tecnologico (CNPq). AAFC was supported by the CAPES-Print scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RRV, CDG, AAFC; Methodology: RRV, RAS, GRSS, PCF, FTB, JMS; Formal analysis: RRV, RAS, PL, CDG, AAFC. Investigation and Data curation: RRV. Writing-original draft preparation: RRV, JMS; Writing-review and editing: PL, CDG, AAFC. Project administration and Funding acquisition: CDG; Supervision: CDG, AAFC.

Corresponding author

Correspondence to Cristiane D. Gil.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, R.R., da Silva, R.A., Sasso, G.R.S. et al. Lack of Annexin A1 Exacerbates Inflammatory Response in Acute Endometritis Model. Inflammation (2024). https://doi.org/10.1007/s10753-023-01959-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-023-01959-3

KEY WORDS

Navigation